
1

Vector Database for

Artificial Intelligence

Cloud-Based JaguarDB

and Embedded Vector Database JaguarLite

User Manual

捷豹向量数据库云管理和开发手册

Administrador en la Nube de JaguarDB y Manual del Usuario

JaguarDB クラウド管理者およびユーザーマニュアル

जैगुआरडीबी क्लाउड प्रशासक और उपयोगकर्ाा मैनुअल

Administrateur de Cloud JaguarDB et Manuel de l'Utilisateur

JaguarDB Cloud-Administrator und Benutzerhandbuch

(Release 3.4.5 07/01/2025)

2

Contents

Introduction .. 10

Programing Jaguar Vector Database ... 13

Guides and Concepts .. 13

Pods ... 13

Stores .. 13

Vector Indexes .. 13

Scalar Indexes ... 13

Python Example of Full Text Vector Search .. 14

Combing Vector Search and Exact Search .. 22

Anomaly Vector Search ... 23

RAG Example Integrating LLM and JaguarDB ... 24

Jaguar Vector Database API .. 26

Creating a store for Vectors .. 26

Adding Vectors .. 32

Similarity Search .. 32

Multimodal Similarity Search .. 33

Time Decayed Similarity Search .. 35

Time Cutoff ... 37

Anomaly Detection ... 37

Retrieving Vectors ... 39

Updating Vectors .. 40

Deleting Vectors .. 40

Environment ... 41

System Requirements for Jaguar Server ... 41

System Requirements for Jaguar Client .. 41

Cloud Framework .. 41

JaguarDB Installation .. 43

Operating Systems .. 44

Linux System ... 44

JaguarDB Server and Client Setup ... 44

Installation Method One ... 45

Installation Method Two ... 45

3

Installation Method Three .. 46

Installation Method Four .. 47

Configuration .. 48

Jaguar Server Startup .. 50

Linux System ... 50

HTTP Gateway Setup ... 50

Jaguar Architecture ... 54

Server Topology .. 57

High Availability .. 58

System Configuration .. 59

Mount noatime ... 59

Resource limits .. 59

Maximum Number of Open Files .. 59

Maximum Number of Threads or Processes Per User .. 59

Maximum Kernel Threads ... 59

Maximum Number of Process IDs .. 59

Installation Verification ... 60

Test Run .. 60

Test Approaches ... 60

Programming Guide .. 61

Shell ... 61

Curl .. 61

C++/C ... 63

Java .. 64

Java JDBC ... 64

Scala .. 65

Python ... 65

Direct Access ... 66

With jaguardb-socket-client Package ... 66

With jaguardb-http-client Package .. 67

PHP .. 68

NodeJS ... 69

Go .. 70

4

Query with Index ... 72

Shell.. 72

C++/C .. 72

Java JDBC .. 73

Client API Reference ... 73

CURL API .. 75

Python REST API .. 76

LangChain Integration ... 78

LLamaIndex Interation .. 78

NodeJS API .. 79

Operation .. 79

Remote Backup ... 79

Setup on the first Jaguar server host .. 79

Setup on the remote backup server host ... 80

Data Types ... 81

Default Values ... 87

Data Type Mapping Between Jaguar and Java ... 88

Jaguar Functions ... 88

Jaguar SQL Statements ... 92

Admin commands ... 93

Grant command .. 94

Revoke command ... 94

Describe command ... 95

Show command .. 96

Create command ... 96

Insert SQL Commands ... 98

Load command.. 100

Select SQL command .. 100

Getfile command .. 102

Update SQL Command .. 104

Delete SQL Command ... 105

Drop command ... 105

Truncate command ... 106

5

Alter command ... 106

Spool command .. 106

Group By Statement ... 107

Group By LastValue Statement ... 107

Order By Statement .. 107

Aggregation Statement ... 108

System Limits .. 108

Limits of store Columns .. 108

Limits of Vector Columns in a store .. 108

Limits on Length of a Database Name .. 108

Limits on Length of a Column Name ... 109

Limits on Number of Bytes of a Row... 109

Schema Change ... 109

Use spare_ Column ... 109

store Change ... 109

Fault Tolerance ... 110

Expanding Jaguar Cluster .. 110

Jaguar Database Security .. 112

Network Protection .. 112

Server System Protection .. 113

User Privilege and File Permission .. 113

Database User Authentication .. 113

User Level Control ... 113

Server Communication Control .. 114

Access Control List .. 114

Log Monitoring .. 114

Data Import and Synchronization ... 114

Step One: Create stores on Jaguar .. 115

Step Two: Create Changelog Triggers ... 115

Step Three: Importing Data .. 115

Step Four: Updating Jaguar stores .. 115

Spark Data Analysis ... 117

SparkR with Jaguar .. 123

6

Spatial Data Management .. 125

Spatial Data Types ... 125

Spatial Data Storage .. 131

Creating store Containing Spatial Data ... 131

Inserting Spatial Data .. 131

Loading Spatial Data ... 133

Spatial Data Query .. 133

Coordinate .. 133

Within .. 133

NearBy ... 134

Intersect .. 135

CoveredBy ... 135

Cover ... 135

Contain .. 135

Disjoint .. 135

Distance ... 136

Shapes for Location Relation .. 136

Area ... 148

GeoJson ... 149

Dimension ... 149

GeoType .. 149

PointN ... 149

Extent .. 150

StartPoint .. 150

EndPoint .. 150

IsClosed ... 150

Number of Points .. 151

Number of Rings ... 151

Number of Lines .. 151

SRID ... 151

Summary ... 151

Minimum and Maximum Points ... 151

ConvexHull .. 152

7

Centroid .. 152

Volume .. 152

Closestpoint .. 152

Angle ... 153

Buffer .. 153

Length ... 153

Perimeter .. 153

Equal.. 153

IsSimple ... 153

IsValid .. 154

IsRing ... 154

IsPolygonCCW ... 154

IsPolygonCW ... 154

OuterRing .. 154

OuterRings .. 154

InnerRings ... 154

RingN ... 155

InnerRingN .. 155

PolygonN ... 155

Unique ... 155

Union ... 155

Collect ... 155

ToPolygon ... 155

Text ... 155

Difference .. 156

SymDifference ... 156

IsConvex .. 156

Interpolate .. 156

LineSubstring ... 156

LocatePoint ... 156

AddPoint ... 157

SetPoint ... 157

RemovePoint ... 157

8

Reverse .. 157

Scale .. 158

ScaleAt... 158

ScaleSize .. 158

Translate ... 158

TransScale ... 159

Rotate .. 159

RotateSelf .. 159

RotateAt .. 160

Affine ... 160

Voronoi Polygons .. 160

Voronoi Lines .. 161

Delaunay Triangles .. 161

GeoJson ... 161

ToMultipoint ... 162

WKT (Well Known Text) .. 162

MinimumBoundingCircle .. 162

MinimumBoundingSphere .. 163

IsOnLeft ... 163

IsOnRight ... 163

LeftRatio .. 163

RightRatio .. 164

KNN (K Nearest Neighbor) .. 164

MetricN ... 164

Spatial Index .. 164

Time Series Data Management ... 166

JaguarDB Time Series .. 166

Creating Time Series stores .. 166

Examples of Time Series stores ... 170

Food Delivery Time Series ... 170

Traffic Monitoring Time Series .. 170

IoT Sensor Time Series .. 171

Base store and Ticks .. 174

9

Inserting Data into Time Series stores .. 179

Reading Data From Time Series stores ... 180

Reading From Base store and Tick stores ... 180

Grouping Data In Windows ... 181

All Key Values in Tick store ... 182

Indexes of Time Series stores ... 183

Delete Data From Time Series .. 187

Truncate Time Series... 189

Drop Time Series ... 191

Space and Time Data Management .. 191

Spring Boot Framework .. 194

JaguarLite .. 201

Summary ... 209

Reference .. 209

Vector Search .. 209

Location Data .. 215

Timeseries Data... 233

10

Introduction

This user manual introduces JaguarDB and JaguarLite — two powerful vector database

systems tailored for different deployment environments. JaguarDB is a cloud-based,

distributed vector database that scales seamlessly across multiple computing nodes to

handle large-scale vector data workloads. In contrast, JaguarLite is a lightweight,

embedded vector database designed to operate as a standalone system without

requiring a network connection, making it ideal for edge devices in AI applications

such as image understanding, document analysis, and generation.

Although JaguarDB and JaguarLite function in different network environments, they

share the same core capabilities: vector data storage and search, time-series data

analysis, geospatial data processing, and indexed file management. Both systems also

support multi-tenant data organization, ensuring that each customer's data is isolated

from others, thereby maintaining data security and integrity.

JaguarDB is a vector database equipped with its distinctive ZeroMove hashing

technology, enabling seamless scalability to handle extensive volumes of vector data

and media content. Artificial intelligence (AI) often relies on vector databases for

various tasks such as natural language processing, information retrieval,

recommendation systems, and similarity matching. The use of vector databases is

particularly relevant in the context of machine learning models that leverage

embeddings, which are numerical representations of data elements in a continuous

vector space.

Vectors provide a compact and efficient representation of complex data structures. By

transforming data elements into vectors with thousands of dimensions, AI systems can

work with numerical representations that are more amenable to mathematical

operations and analysis. Vector databases enable the computation of similarity or

distance metrics between vectors, such as cosine similarity or Euclidean distance. These

metrics are fundamental for tasks like similarity matching, nearest neighbor searches,

and clustering, which are essential in recommendation systems, content retrieval, and

data exploration.

11

In the fields of generative AI, the exponential growth of data is inevitable. From

voluminous vector data to vast collections of photos and videos, the potential for

information generation knows no bounds. However, efficiently managing this diverse

and ever-expanding data landscape poses a significant challenge for traditional

database and storage systems. AI-generated data can quickly accumulate and consume

significant storage space. Storing and managing this massive amount of data requires

robust and scalable infrastructure. Organizations need to invest in adequate storage

solutions, such as cloud storage or distributed file systems, to accommodate the

growing data volumes.

Traditional databases rely on consistent hashing techniques, which, unfortunately, lead

to excessive data migration. During the constant expansion of data systems,

incremental scaling operations often require data migration for almost every piece of

data and impose substantial costs on the system. These costs manifest in various forms,

including increased power consumption, hardware wear and tear, and degraded

performance.

The innovative ZeroMove technique is employed in JaguarDB that offers a

revolutionary solution. In contrast to the consistent hashing algorithm, which requires

data migration when scaling out the system, ZeroMove enables scaling without the

need to move data between computers. Data is intelligently tagged with encoded

identifiers to facilitate efficient host location. These encoded identifiers serve as unique

markers that enable swift and accurate retrieval of data within the system. Our

approach ensures that data remains in the host where it is hashed, thereby increasing

availability, and improving system performance.

12

An AI datalake is equally crucial for AI applications, as media data like images and

videos tend to occupy more space compared to structured data. The ZeroMove

technology is particularly potent when it comes to efficiently scaling AI data systems.

Geospatial search plays a significant role in enhancing the capabilities of AI, especially

in robotic applications. Self-driving cars, drones, and robotics heavily rely on geospatial

data for navigation and obstacle avoidance. AI models can forecast future trends and

outcomes by analyzing historical time series data. This is vital for financial predictions,

stock market analysis, and demand forecasting.

JaguarDB is a pioneering platform that seamlessly brings together vector data, time

series, and location data into a unified ecosystem. With JaguarDB, users can effortlessly

manage and leverage vector data and diverse data types in a single, comprehensive

solution. This convergence in JaguarDB eliminates the need for multiple disjointed

systems. This streamlined approach not only simplifies data management but also

proves cost-effective, particularly for large-scale AI data systems.

13

Programing Jaguar Vector Database

Guides and Concepts

Pods

A Pod serves as a versatile repository designed to house and manage multiple stores

within an organization. This structural unit not only functions as a robust database but

also excels in promoting streamlined and effective data management. Its primary role

lies in facilitating the organized and efficient handling of data, ensuring clear data

structures and swift data accessibility.

Stores

A store in JaguarDB bears a resemblance to the stores found in the relational

databases, but with the added capability of accommodating multiple vector indexes.

This feature grants it with versatility, allowing users to store not just scalar data, but

also vector data and raw binary data, making it a multi-purpose storage solution.

Multiple stores can exist in a pod.

Vector Indexes

A vector index is a data structure or technique used to efficiently store and retrieve

high-dimensional vectors. The Hierarchical Navigable Small World (HNSW) is a type

of data structure and algorithm used for efficient approximate nearest neighbor search

in high-dimensional spaces. It is integrated and extended in JaguarDB to address the

challenges of performing nearest neighbor searches in spaces with a large number of

dimensions, where traditional search methods become less effective.

Scalar Indexes

A scalar is a store column in database to represent a data attribute. A scalar index is a

data structure that improves the speed of scalar data retrieval operations on a database

store. It is an integral part of JaguarDB and plays a crucial role in optimizing query

performance, on both vector search and scalar search. Scalar indexes together with

vector indexes can quickly locate and access data records that satisfy a specific

condition.

14

Python Example of Full Text Vector Search

The following Python example illustrates the integration of JaguarDB into AI

applications for the benefit of software engineers and data scientists. In this

demonstration, the focus lies on the seamless storage of textual data, the creation of

embeddings, and the execution of similarity searches within the text data corpus. The

process entails identifying texts that closely correspond to a given query text. Notably,

this operation is solely reliant on vector embeddings, rendering the inclusion of

explicit keywords or search cues unnecessary.

The following Python code connects to JaguarDB instance:

 jag = jaguarpy.Jaguar()

 host = "127.0.0.1"

 port = sys.argv[1]

 user = "admin"

apikey = "myapikey"

 vectordb = "vdb"

 rc = jag.connect(host, port, apikey, vectordb)

print ("Connected to JaguarDB server")

15

Next, a store containing vector column and other related data is created:

 jag.execute("create store textvec (key: zid zuid, value: v vector(1024,

'cosine_fraction_short'), text char(2048), source char(32))")

In this statement, the "zid" field stands as an automatically generated unique identifier.

The "v" field represents a vector, comprising two primary elements: an integer vector

ID and an array of vector components. Notably, the dimension of the vector is set at

1024. The inclusion of "cosine" within the string "cosine_fraction_short" signifies the

intention to employ the cosine distance metric for similarity searches conducted on the

vector. The term "fraction" alludes to the anticipated fractional-format input data. It's

worth noting that JaguarDB vector storage implements distinct quantization levels.

Specifically, the short quantization mode leverages 16-bit quantization techniques to

efficiently store vector data. Ther is no limit on the number of vectors in a store.

Multiple vectors can be created on the same store, to capture various types of vectors

for the same object. The “text” field can store text data for an object, with a maximum

capacity of 2048 bytes.

When a store is created with a vector column, a scalar index is automatically created to

link the vector ID and the zeromove unique id. The name of the scalar index is

“DB.store.veccol_zid_idx”, where DB is the name of the database or pod, store is the

name of the store or store, and “veccol” is the name of vector column. User can create

other scalar indexes based on specific requirements.

With JaguarDB, users can store various types of vectors, such as feature vectors and

embedding vectors. An embedding vector, often simply referred to as an "embedding,"

is a mathematical representation of a discrete item, such as a word, phrase, image, or

any other entity, in a continuous vector space. This technique is commonly used in

various fields, including natural language processing (NLP), computer vision,

recommendation systems, and more. The primary idea behind embedding vectors is to

capture semantic relationships between items by placing similar items closer together

in the vector space.

In this example, we use the “BAAI/bge-large-en” pre-trained embedding model to

generate embeddings for the text data. A pre-trained embedding model is a machine

16

learning model that has been trained on a large dataset to create meaningful

representations (embeddings) of items in a continuous vector space. These embeddings

capture semantic relationships and contextual information about the items. Pre-

training involves training the model on a specific task, such as language modeling or

image classification, with the goal of learning general features and patterns from the

data. These learned features can then be fine-tuned or used as-is for various

downstream tasks. Pre-trained embedding models are especially popular in natural

language processing (NLP) and computer vision. The model “BAA/bge-large-en”

requires a dimension of 1024 on the vectors, which was specified in the statement

when we created the store and the vector field.

 model = SentenceTransformer('BAAI/bge-large-en')

There are some simple required steps to setup and use the model. They are described

in the github project github.com/fserv/jaguardb, in embedding ➔ text ➔ baai-bge-

large ➔ README.md.

Next, we store a group of text data in the vector database store:

text = "Human impact on the environment (or anthropogenic environmental impact) refers

to changes to biophysical environments and to ec

osystems, biodiversity, and natural resources caused directly or indirectly by

humans."

 zuid1 = storeText(jag, model, text, “wiki”)

 text = "a group of people involved in persistent interpersonal relationships, or a

large social grouping sharing the same geographical or social territory, typically

subject to the same political authority and dominant cultural expectations. Human

societies are characterized by patterns of relationships (social relations) between

individuals who share a distinctive culture and institutions; a given society maybe

described as the total of such relationships among its constituent members."

 zuid2 = storeText(jag, model, text, “wiki”)

 text = "In 1768, Astley, a skilled equestrian, began performing exhibitions of

trick horse riding in an open field called Ha'Penny Hatch on the south side of the

Thames River, England. In 1770, he hired acrobats, tightrope walkers, jugglers and a

clown to fill in the pauses between the equestrian demonstrations and thus chanced on

the format which was later named a circus. Performances developed significantly

 over the next fifty years, with large-scale theatrical battle reenactments becoming a

significant feature. "

 zuid3 = storeText(jag, model, text, “wiki”)

 text = "Astley had a genius for trick riding. He saw that trick riders received

the most attention from the crowds in Islington. He had an idea for opening a riding

school in London in which he could also conduct shows of acrobatic riding skill. In

1768, Astley performed in an open field in what is now the Waterloo area of London,

behind the present site of St John's Church. Astley added a clown to his shows t

o amuse the spectators between equestrian sequences, moving to fenced premises just

south of Westminster Bridge, where he opened his riding school from 1769 onwards and

17

expanded the content of his shows. He taught riding in the mornings and performed his

feats of horsemanship in the afternoons."

 zuid4 = storeText(jag, model, text, “google”)

 text = "After the Amphitheatre was rebuilt again after the third fire, it was said

to be very grand. The external walls were 148 feet long which was larger than

anything else at the time in London. The interior of the Amphitheatre was designed

with a proscenium stage surrounded by boxes and galleries for spectators. The general

structure of the interior was octagonal. The pit used for the entertainers and ri

ders became a standardised 43 feet in diameter, with the circular enclosure surrounded

by a painted four foot barrier. Astley's original circus was 62 ft (~19 m) in

diameter, and later he settled it at 42 ft (~13 m), which has been an international

standard for circuses since."

 zuid5 = storeText(jag, model, text, “wiki”)

 text = "According to the Big Bang theory, the energy and matter initially present

have become less dense as the universe expanded. Afte

r an initial accelerated expansion called the inflationary epoch at around 10−32

seconds, and the separation of the four known fundamental forces, the universe

gradually cooled and continued to expand, allowing the first subatomic particles and

simple atoms to form. Dark matter gradually gathered, forming a foam-like structure of

filaments and voids under the influence of gravity. Giant clouds of hydrogen and heli

um were gradually drawn to the places where dark matter was most dense, forming the

first galaxies, stars, and everything else seen today."

 zuid6 = storeText(jag, model, text, “wiki”)

 text = "By comparison, general relativity did not appear to be as useful, beyond

making minor corrections to predictions of Newtonian gravitation theory. It seemed to

offer little potential for experimental test, as most of its assertions were on an

astronomical scale. Its mathematics seemed difficult and fully understandable only by

a small number of people. Around 1960, general relativity became central to p

hysics and astronomy. New mathematical techniques to apply to general relativity

streamlined calculations and made its concepts more easily visualized. As astronomical

phenomena were discovered, such as quasars (1963), the 3-kelvin microwave background

radiation (1965), pulsars (1967), and the first black hole candidates (1981), the

theory explained their attributes, and measurement of them further confirmed the t

heory."

 zuid7 = storeText(jag, model, text, “wiki”)

 text = "In astronomy, the magnitude of a gravitational redshift is often expressed

as the velocity that would create an equivalent shift through the relativistic Doppler

effect. In such units, the 2 ppm sunlight redshift corresponds to a 633 m/s receding

velocity, roughly of the same magnitude as convective motions in the sun, thus

complicating the measurement. The GPS satellite gravitational blueshift velo

city equivalent is less than 0.2 m/s, which is negligible compared to the actual

Doppler shift resulting from its orbital velocity."

 zuid8 = storeText(jag, model, text, “google”)

 text = "Turn on the sprinkler system. In order to locate the break or leak in the

sprinkler system, you need to run water through it. Turn on the sprinkler system to

activate the flow of water. Allow the water to run for about 2 minutes before you

check the lines. Do this in the daytime, when you'll have an easier time spotting the

leak. If your sprinkler system is separated into zones, activate the zones one

at a time so you can identify the break or leak more easily."

 zuid9 = storeText(jag, model, text, “wiki”)

 text = "Check for water bubbling up from the soil. If you see a pool of water or

water coming from the soil, then there’s a leak in the sprinkler line buried

underneath. Mark the general location of the leak or break so you can identify it when

the water is turned off. Place an item like a shovel or a rock on the ground near the

leak. Turn off the sprinkler system after you’ve found the leak. If you’ve found the

signs of a leak and located the region where the line is leaking or broken, turn off

18

the water so you can repair the line. Use the shut-off valve in the control box to

stop the flow of water through the system."

 zuid10 = storeText(jag, model, text, “wiki”)

 text = "In fact, Antarctica is such a good spot for meteorite hunters that crews

of scientists visit every year, searching for these otherworldly rocks, driving around

the surface until they spot a lone dark rock on an otherwise unbroken expanse of

white. However, you don’t always have to travel to the other side of the world to find

a meteorite. Sometimes meteorites will come to you. Keep an eye open for local reports

of brilliant fireballs lighting your region’s sky. Debris from such displays scatters

across the ground and sometimes hits structures or vehicles. Watch for information

about fireballs in your area on the websites of the American Meteor Society or the

International Meteor Organization."

 zuid11 = storeText(jag, model, text, “wiki”)

 text = "Most tornadoes are found in the Great Plains of the central United States

– an ideal environment for the formation of severe thunderstorms. In this area, known

as Tornado Alley, storms are caused when dry cold air moving south from Canada meets

warm moist air traveling north from the Gulf of Mexico. Tornadoes can form at any time

of year, but most occur in the spring and summer months along with thunderstorms. May

and June are usually the peak months for tornadoes. The Great Plains are conducive to

the type of thunderstorms (supercells) that spawn tornadoes. It is in this region that

cool, dry air in the upper levels of the atmosphere caps warm, humid surface air. This

situation leads to a very unsstore atmosphere and the development of severe

thunderstorms."

zuid12 = storeText(jag, model, text, “google”)

The function storeTex is implemented with the following program:

def storeText(jag, model, text, src):

 sentences = [text]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 vstr = ",".join([str(x) for x in embeddings[0]])

 istr = "insert into textvec values ('" + vstr + "','" + text + "','”+src+”')"

 jag.execute(istr)

 return jag.getLastZuid()

Now we can use a query and get similar texts from database:

query_text = "More recently, that focus has shifted eastward by 400 to 500 miles. In

the past decade or so tornadoes have become prevalent in eastern Missouri and

Arkansas, western Tennessee and Kentucky, and northern Mississippi and Alabama—a new

region of concentrated storms. Tornado activity in early 2023 epitomized the trend."

 K = 3;

 retrieveTopK(jag, model, query_text, K)

The result is show below:

19

Retrieved similar texts:

Rank: 1

Vector ID: 1168196459548885000

Distance: 83010886

Text: Most tornadoes are found in the Great Plains of the central United States – an

ideal environment for the formation of severe thunderstorms. In this area, known as

Tornado Alley, storms are caused when dry cold air moving south from Canada meets warm

moist air traveling north from the Gulf of Mexico. Tornadoes can form at any time of

year, but most occur in the spring and summer months along with thunderstorms.

May and June are usually the peak months for tornadoes. The Great Plains are conducive

to the type of thunderstorms (supercells) that spawn tornadoes. It is in this region

that cool, dry air in the upper levels of the atmosphere caps warm, humid surface air.

This situation leads to a very unsstore atmosphere and the development of severe

thunderstorms.

Rank: 2

Vector ID: 1168196459122135000

Distance: 132491843

Text: In fact, Antarctica is such a good spot for meteorite hunters that crews of

scientists visit every year, searching for these otherworldly rocks, driving around

the surface until they spot a lone dark rock on an otherwise unbroken expanse of

white. However, you don’t always have to travel to the other side of the world to find

a meteorite. Sometimes meteorites will come to you. Keep an eye open for local reports

of brilliant fireballs lighting your region’s sky. Debris from such displays scatters

across the ground and sometimes hits structures or vehicles. Watch for information

about fireballs in your area on the websites of the American Meteor Society or the

International Meteor Organization.

Rank: 3

Vector ID: 1168196458028280000

Distance: 145542249

Text: In astronomy, the magnitude of a gravitational redshift is often expressed as

the velocity that would create an equivalent shift through the relativistic Doppler

effect. In such units, the 2 ppm sunlight redshift corresponds to a 633 m/s receding

velocity, roughly of the same magnitude as convective motions in the sun, thus

complicating the measurement. The GPS satellite gravitational blueshift velocity

equivalent is less than 0.2 m/s, which is negligible compared to the actual Doppler

shift resulting from its orbital velocity.

Then we can have another query and get similar texts from database:

 query_text = "Think of designing a landscape for the bare lot surrounding your new

home as an adventure in creativity. Perhaps your property needs only a few small,

easily doable projects to make it more attractive. Either way, it's important to

20

consider how each change will relate to the big picture. Stand back from time to time

to see the entire landscape and how each part fits into it."

 K = 3;

retrieveTopK(jag, model, query_text, K)

Retrieved similar texts:

Rank: 1

Vector ID: 1692034183297995000

Distance: 135676737

Text: Check for water bubbling up from the soil. If you see a pool of water or water

coming from the soil, then there’s a leak in the sprinkler line buried underneath.

Mark the general location of the leak or break so you can identify it when the water

is turned off. Place an item like a shovel or a rock on the ground near the leak. Turn

off the sprinkler system after you’ve found the leak. If you’ve found the signs of

a leak and located the region where the line is leaking or broken, turn off the water

so you can repair the line. Use the shut-off valve in the control box to stop the flow

of water through the system.

Rank: 2

Vector ID: 1168196459122135000

Distance: 137667225

Text: In fact, Antarctica is such a good spot for meteorite hunters that crews of

scientists visit every year, searching for these otherworldly rocks, driving around

the surface until they spot a lone dark rock on an otherwise unbroken expanse of

white. However, you don’t always have to travel to the other side of the

world to find a meteorite. Sometimes meteorites will come to you. Keep an eye open for

local reports of brilliant fireballs lighting your region’s sky. Debris from such

displays scatters across the ground and sometimes hits structures or vehicles. Watch

for information about fireballs in your area on the websites of the American Meteor

Society or the International Meteor Organization.

Rank: 3

Vector ID: 1692034180102679000

Distance: 142799019

Text: Human impact on the environment (or anthropogenic environmental impact) refers

to changes to biophysical environments and to ecosystems, biodiversity, and natural

resources caused directly or indirectly by humans.

The full listing of Python3 programs is shown below.

21

def searchSimilarTexts(jag, model, queryText, K):

 sentences = [queryText]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_separated_str = ",".join([str(x) for x in embeddings[0]])

 qstr = "select similarity(v, '" + comma_separated_str

 qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')"

 qstr += " from textvec"

 jag.query(qstr)

 jsonstr = ''

 while jag.fetch():

 jsonstr = jag.json()

 return jsonstr

def getTextByVID(jag, vid):

 qstr =" select zid from test. textvec. textvec_idx where v='" + vid + "'"

 zid = ''

 jag.query(qstr)

 while jag.fetch():

 zid = jag.getValue("zid")

 qstr = "select text from textvec where zid='" + zid + "'"

 jag.query(qstr)

 txt = ''

 while jag.fetch():

 txt = jag.getValue("text")

 return txt

def retrieveTopK(jag, model, query_text, K):

22

 print("Query: " + query_text)

 json_str = searchSimilarTexts(jag, model, query_text, K)

 json_obj = json.loads(json_str)

 i = 0;

 print("\n")

 print("Retrieved similar texts: ")

 for rec in json_obj:

 dat = rec[str(i)]

 print("\n")

 print("Rank: " + str(i+1))

 vid = dat["id"]

 print("Vector ID: " + vid)

 print("Distance: " + dat["distance"])

 txt = getTextByVID(jag, vid)

 print("Text: " + txt)

 i += 1

print("\n\n")

Furthermore, extending beyond text embeddings, the capability exists to generate

image and video embeddings. These embeddings serve as efficient tools for rapid

image and video searches using vector-based techniques. This advancement empowers

users to swiftly locate relevant images and videos by exploiting the inherent

characteristics captured within the embedding vectors. As a result, the need for

intricate keyword-based searches or complex metadata is significantly reduced,

enhancing the speed and accuracy of the search process.

Combing Vector Search and Exact Search

JaguarDB empowers users with a unique synergy of similarity search and exact

predicate search. In the context of this integration, consider the following Python

illustration: it finds textual instances similar to a given input text while concurrently

sifting through records that adhere to specific criteria. The outcome of this combined

23

endeavor is the assignment of similarity values to the retrieved records, a direct

consequence of the similarity search's operation. It is noted that the governing

criterion, in this case, relates to the source of the text. However, in practical

implementation, a number of predicates can be applied.

def retrieveTopKWithCriteria(jag, model, queryText, src, K):

 print("Query: " + queryText)

 sentences = [queryText]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_str = ",".join([str(x) for x in embeddings[0]])

 qstr = "select similarity(v, '" + comma_str

 qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')"

 qstr += " from textvec"

 qstr += " where source='" + src + "'"

 jag.query(qstr)

 print("\n")

 print("Result: ")

 while jag.fetch():

 print('zid={}'.format(jag.getValue("zid")))

 print('v={}'.format(jag.getValue("v")))

 print('vectorid={}'.format(jag.getValue("vectorid")))

 print('rank={}'.format(jag.getValue("rank")))

 print('distance={}'.format(jag.getValue("distance")))

 print('source={}'.format(jag.getValue("source")))

 print('text={}'.format(jag.getValue("text")))

 print("\n")

Anomaly Vector Search

Anomaly detection plays a crucial role in identifying outliers that may indicate

instances of fraud, network hacking activities, and various types of attacks such as

network intrusions and DDoS attacks. Utilizing vectors as an innovative method to

thoroughly examine and assess these anomalies is first provided by JaguarDB.

The following example demonstrates how text, images, videos, or any type of data that

can be represented by a vector, can be detected if the input data is anomalous:

select anomalous(v, '1,2,3,1,0.3’,

24

 'type=euclidean_whole_float, activation=[1.5:30;2:35;3:20]’)
from tab;

Result:

{"anomalous":"YES","percent":"52;45;23","activation":"1.5:30;2:35;3:20"}]

RAG Example Integrating LLM and JaguarDB

Retrieval-Augmented Generation (RAG) emerges as a groundbreaking solution to

address the limitations of Large Language Models (LLMs), particularly their propensity

to produce hallucinated or factually inaccurate content. RAG operates by ingeniously

blending the strengths of retrieval-based models, which excel in sourcing and

providing accurate, context-specific information from a vast dataset, with the

innovative capacity of generative models known for their ability to create fluent and

coherent responses. In this synergistic framework, the retrieval component first fetches

the most relevant information pertinent to a given query or context. This information

is then seamlessly integrated into the generative model's process, guiding it to produce

responses that are not only creative and contextually coherent but also anchored in

factual accuracy. Consequently, RAG significantly enhances the reliability and quality

of the outputs from LLMs, making them more effective for investment tasks requiring

high factual correctness and detailed context understanding.

The following Python example illustrates documents broken into chunks that are

stored in JaguarDB which compliments the LLM for answering questions from users.

The texts in JaguarDB are fed to the LLM which will analyze all available data and

provide a coherent and logical final answer.

from langchain.document_loaders import TextLoader

from langchain.embeddings.openai import OpenAIEmbeddings

from langchain.text_splitter import CharacterTextSplitter

#from langchain.vectorstores.jaguar import Jaguar

from jaguar import Jaguar ## use local class file

from langchain.chains import RetrievalQAWithSourcesChain

from langchain.llms import OpenAI

from langchain.schema.output_parser import StrOutputParser

from langchain.schema.runnable import RunnablePassthrough

from langchain.prompts import ChatPromptTemplate

from langchain.chat_models import ChatOpenAI

loader = TextLoader("./state_of_the_union.txt")

25

documents = loader.load()

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=300)

docs = text_splitter.split_documents(documents)

'''

Create a jaguar vector store

This should be done only once

If the store is already created, you do not need to do this.

'''

url = "http://192.168.3.88:8080/fwww/"

embeddings = OpenAIEmbeddings()

pod = "vdb"

store = "langchain_rag_store"

vector_index = "v"

vector_type = "cosine_fraction_float"

vector_dimension = 1536

vectorstore = Jaguar(pod, store, vector_index,

 vector_type, vector_dimension, url, embeddings

)

vectorstore.login("demouser")

''' create vector on the database

This should be called only once

'''

metadata = "category char(16)"

text_size = 4096

vectorstore.create(metadata, text_size)

add texts to vectorstore

vectorstore.add_documents(docs)

retriever = vectorstore.as_retriever()

if use metadata:

#retriever = vectorstore.as_retriever(search_kwargs={"where": "a='123' and

b='xyz'"})

template = """You are an assistant for question-answering tasks. Use the

following pieces of retrieved context to answer the question. If you don't

know the answer, just say that you don't know. Use three sentences maximum

and keep the answer concise.

Question: {question}

Context: {context}

Answer:

"""

prompt = ChatPromptTemplate.from_template(template)

#LLM = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

LLM = ChatOpenAI(model_name="gpt-4", temperature=0)

rag_chain = (

 {"context": retriever, "question": RunnablePassthrough()}

 | prompt

 | LLM

 | StrOutputParser()

26

)

query = "What did the president say about Justice Breyer?"

print(f"Question: {query}\n")

r = rag_chain.invoke(query)

print("Answer:")

print(r)

The above example depends on the LangChain stack and the jaguar.py store file. You

can visit github.com/fserv/jaguar-sdk RAG directory for a complete example.

Jaguar Vector Database API

JaguarDB offers a comprehensive set of application programming interfaces (APIs)

tailored to various development needs. These APIs can be seamlessly employed within

the jql.bin client terminal or seamlessly integrated into programming languages such

as Java, Python, Go, and Node.js. This flexibility empowers developers to interact with

JaguarDB using their preferred environment, ensuring a smooth and versatile

development experience.

Creating a store for Vectors

create store store (

key: …KEY…,

value: VECCOL vector(dimension,'DISTANCE_INPUT_QUANTIZATION'),

…other_fields…

)

The symbol "VECCOL" designates the name of the vector column, while "dimension"

denotes the count of components within a vector. Standard dimensions often include

values like 768, 1024, 1536, etc. The string "DISTANCE_INPUT_QUANTIZATION" is a

vector definition that serves to specify the nature of the distance, input data type, and

https://github.com/fserv/jaguar-sdk

27

level of quantization employed in the vector storage and search of similarity between

vectors. This comprehensive approach accommodates various distance types, which

encompass:

Euclidean Distance

The Euclidean distance, also known as the L2 distance or the Euclidean norm, is a

measure of the straight-line distance between two points in a multi-dimensional space.

It's commonly used to quantify the similarity between vectors.

dist = √∑(Ai − Bi)2
n

i=1

Cosine Distance

Cosine distance is a measure used to quantify the dissimilarity between two vectors in

a multi-dimensional space. Unlike the Euclidean distance that measures the direct

geometric distance between vectors, the cosine distance focuses on the angle between

the vectors.

InnerProduct

Inner product similarity is useful for similarity search in scenarios where the

magnitudes of vectors are important in addition to their directions.

28

Manhatten Distance

Manhattan distance is a distance metric between two points in a multi-dimensional

vector space. It is the sum of absolute difference between the measures in all

dimensions of two points.

dist =∑|Ai − Bi|

n

i=1

Chebyshev Distance

Chebyshev distance is a metric defined on a vector space where the distance between

two vectors is the greatest of their differences along any coordinate dimension.

dist = maxi(|Ai − Bi|)

Hamming Distance

The Hamming distance between two vectors is the number of positions at which the

corresponding components are different.

dist =∑Δ(Ai,  Bi)

𝑛

𝑖=1

Jeccard Distance

The Jeccard distance between two vectors is computed by taking the ratio of

Intersection over Union of the two vectors.

29

Minkowski Half

In general, the Minkowski distance of order p is given by:

dist = (∑|𝐴𝑖 − 𝐵𝑖|
p

𝑛

𝑖−1

)

1/𝑝

In JaguarDB, Minkowski Half distance refers to the Minkowski distance where p = 0.5.

The input type in JagaurDB refers to the expected data format in the input vectors.

There are two input types: fraction and whole. JaguarDB excels not only in managing

vector embeddings but also in handling a diverse range of feature vectors. These

vectors can include various types and forms, whether they are normalized or

unnormalized, presented in fractional or full original formats. This versatility

underscores JaguarDB's capability to accommodate a wide array of data formats.

Fraction Input Format

Each component of a vector is in the range of [-1.0, +1.0], inclusive. An example of a

such a vector would be: “0.1, 0.02, -0.04, -0.5, 0.12, 0.53”.

Whole Input Format

Components of a vector are not limited to the range of [-1.0, +1.0]. They can be in any

range. However, they could be trimmed and converted to the range that is required by

the quantization level as described below.

Quantization Level

There are two quantization levels in JaguarDB: byte and short. The process of

quantizing input vectors yields efficient memory utilization within the system. While

storing a float number demands 4 bytes, employing fewer bytes for storing vector

components can yield substantial memory savings. When components are stored as

30

signed integers, memory savings can reach 50%, while utilizing only a single byte for

vector components can result in an impressive 75% reduction in memory usage. This

approach is termed "short quantization level" for the utilization of signed integers and

"byte quantization level" for the use of a single byte. The quantization of input vectors

aligns with the level specified by the user during vector creation, optimizing memory

consumption while maintaining data integrity.

With byte (8-bit) quantization level, the number of quantized hyper cubes in a 1024-

dimensional hyperspace is 2561024 which is already a large number and vector

distribution would be sparse. With a short (16-bit) quantization level, the number of

available hypercubes is even larger. In rare application scenarios, the vectors could be

densely populated around clusters. A 16-bit quantization may provide higher resolution

of differentiating vectors than an 8-bit quantization. It is a trade-off between storage

size and accuracy in searching nearest neighbors. If no quantization is used, then the

float type can be selected. An 8-bit or 16-bit quantization tend to work well to vectors

of lower dimensions.

Multiple Search Types

During the creation of a vector store, the second argument within the "vector()" field

description, or key definition, offers the flexibility to incorporate multiple instances of

"DISTANCE_INPUT_QUANTIZATION". For instance, it can appear as a series of

"cosine_fraction_byte, hamming_whole_short". This allows users to specify multiple

distance types and quantization levels, albeit limited to a single input type for the same

distance and quantization level. Notably, distinct vector data stores are managed for

each unique combination of the three types, ensuring the effective organization of data

based on these parameters.

List of Key Definitions

Key Definition Distance Input (component x) Quantization

euclidean_fraction_short Euclidean -1.0 <= x <= +1.0 16-bit integer

euclidean_fraction_byte Euclidean -1.0 <= x <= +1.0 8-bit integer

euclidean_whole_short Euclidean -32767 <= x <= 32767 16-bit integer

euclidean_whole_byte Euclidean -127 <= x <= 127 8-bit integer

31

cosine_fraction_short Cosine -1.0 <= x <= +1.0 16-bit integer

cosine_fraction_byte Cosine -1.0 <= x <= +1.0 8-bit integer

cosine_whole_short Cosine -32767 <= x <= 32767 16-bit integer

cosine_whole_byte Cosine -127 <= x <= 127 8-bit integer

innerproduct_fraction_short Inner Product -1.0 <= x <= +1.0 16-bit integer

innerproduct_fraction_byte Inner Product -1.0 <= x <= +1.0 8-bit integer

innerproduct_whole_short Inner Product -32767 <= x <= 32767 16-bit integer

innerproduct_whole_byte Inner Product -127 <= x <= 127 8-bit integer

manhatten_fraction_short Manhatten -1.0 <= x <= +1.0 16-bit integer

manhatten_fraction_byte Manhatten -1.0 <= x <= +1.0 8-bit integer

manhatten_whole_short Manhatten -32767 <= x <= 32767 16-bit integer

manhatten_whole_byte Manhatten -127 <= x <= 127 8-bit integer

hamming_fraction_short Hamming -1.0 <= x <= +1.0 16-bit integer

hamming_fraction_byte Hamming -1.0 <= x <= +1.0 8-bit integer

hamming_whole_short Hamming -32767 <= x <= 32767 16-bit integer

hamming_whole_byte Hamming -127 <= x <= 127 8-bit integer

chebyshev_fraction_short Chebyshev -1.0 <= x <= +1.0 16-bit integer

chebyshev_fraction_byte Chebyshev -1.0 <= x <= +1.0 8-bit integer

chebyshev_whole_short Chebyshev -32767 <= x <= 32767 16-bit integer

chebyshev_whole_byte Chebyshev -127 <= x <= 127 8-bit integer

minkowskihalf_fraction_short MinkowskiHalf -1.0 <= x <= +1.0 16-bit integer

minkowskihalf_fraction_byte MinkowskiHalf -1.0 <= x <= +1.0 8-bit integer

minkowskihalf_whole_short MinkowskiHalf -32767 <= x <= 32767 16-bit integer

minkowskihalf_whole_byte MinkowskiHalf -127 <= x <= 127 8-bit integer

jeccard_fraction_short Jeccard -1.0 <= x <= +1.0 16-bit integer

jeccard_fraction_byte Jeccard -1.0 <= x <= +1.0 8-bit integer

jeccard_whole_short Jeccard -32767 <= x <= 32767 16-bit integer

jeccard_whole_byte Jeccard -127 <= x <= 127 8-bit integer

euclidean_fraction_float Euclidean float 32-bit float

euclidean_whole_float Euclidean float 32-bit float

cosine_fraction_float Cosine float 32-bit float

cosine_whole_float Cosine float 32-bit float

innerproduct_fraction_float InnerProduct float 32-bit float

innerproduct_whole_float InnerProduct float 32-bit float

32

manhatten_fraction_float Manhatten float 32-bit float

manhatten_whole_float Manhatten float 32-bit float

hamming_fraction_float Hamming float 32-bit float

hamming_whole_float Hamming float 32-bit float

chebyshev_fraction_float Chebyshev float 32-bit float

chebyshev_whole_float Chebyshev float 32-bit float

minkowskihalf_fraction_float MinkowskiHalf float 32-bit float

minkowskihalf_whole_float MinkowskiHalf float 32-bit float

jeccard_fraction_float Jeccard float 32-bit float

jeccard_whole_float Jeccard float 32-bit float

Adding Vectors

JaguarDB can integrate all application and vector data, facilitating streamlined data

management for real-world scenarios. It enables the incorporation of vector data

alongside other pertinent information related to business objects, allowing for

comprehensive and cohesive data representation.

insert into store (…, VECCOL, …) values (…, 'VECTOR_STRING', …)

insert into store values (…, 'VECTOR_STRING', …)

Where VECTOR_STRING is a list of comma-separated components of the vector. In the

second statement, the values must be provided according to the correct order of the

columns in the store. Once the vector is added, the value of the field for VECCOL will

be replaced with an integer as the unique identifier for the vector. With a vector ID,

the components of the vector can be retrieved from the vector database.

Similarity Search

Similarity search using JaguarDB vectors involves the process of finding vectors within

the database that are most similar to a given query vector. This search is conducted

33

based on predefined similarity metrics, such as cosine similarity or Euclidean distance

similarity, which quantify the resemblance between vectors. The API for similarity

search is as follows:

select

similarity(v, 'QUERY_VECTOR',

'topk=K,type=DIST_INPUT_QUANT,with_score=yes,with_text=yes')

from store;

where QUERY_VECTOR is a list of comma-separated component values of the vector.

The number “K” specifies the number of most similar vectors to be found and returned

for the query vector. The returned result is in the JSON format and the developer can

call the json() function to parse the JSON format and retrieve the ID and distance

values.

As an example, the following statement returns the top 5 most similar vectors to the

query vector:

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1',

'topk=5,type=manhatten_fraction_byte') from vec1;

Multimodal Similarity Search

In various application scenarios, there arises a need for users to perform targeted

queries on a dataset, ensuring that the retrieved data records not only adhere to certain

criteria but also exhibit a certain level of similarity to a provided data sample. This

intricate task demands the identification of vectors that are both closely related and

satisfy specific prerequisites. With the innovative capabilities of JaguarDB, this complex

process can be streamlined into a single step. Through the integration of similarity

search alongside selective criteria, JaguarDB facilitates the discovery of nearest

neighbors that fulfill predefined qualifications. This advanced functionality empowers

users to seamlessly locate a subset of data records and subsequently assess their

34

likeness to a reference vector, resulting in the assignment of similarity rankings. By

encompassing both the aspects of similarity and tailored selection, this approach

significantly mitigates the potential for inaccuracies, making it particularly well-suited

for environments characterized by stringent business requirements.

JaguarDB's unique amalgamation of similarity-based search and tailored qualification

selection brings unprecedented efficiency to the intricate task of querying and

comparison. Once a cohort of relevant data records is extracted, their alignment with a

given vector is precisely evaluated, generating a hierarchy of similarity rankings. This

integrated approach is instrumental in refining the matching process, ensuring that

data records not only exhibit the desired attributes but also possess a designated

degree of resemblance to a reference sample. This holistic functionality carries

substantial benefits, especially in high-stakes scenarios where precision is paramount.

By converging the twin challenges of similarity and criterion-based filtering, JaguarDB

effectively minimizes the potential for inaccuracies, offering a robust solution for

industries demanding precise data retrieval and analysis. Through this innovative

approach, JaguarDB empowers users to navigate the complexities of data exploration

with enhanced accuracy and confidence, establishing itself as a pivotal tool in the

pursuit of data-driven excellence.

The following similarity search statement is extended with the “where clause” to filter

the nearest neighbors of the input query vector:

select

similarity(v, 'QUERY_VECTOR',

'topk=K,fetch_k=N,type=DIST_INPUT_QUANT,with_score,metadata=col3&col4')

from store

where attribute1 = … and attribute2 = …;

For example:

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1',

'topk=10,fetch_k=100,type=manhatten_fraction_float,metadata=zip')

from vec1

35

where customer_region=’NE’ and marriage_status=’single’;

In this illustrative scenario, the foremost consideration involves the establishment of a

fetch_k=100 similar records. Simultaneously, another set of data is determined by the

criteria enlisted in the "where" clause. The intersection of these two sets of data, with a

maximum of topk=10 records, is returned to the user. The number of fetch_k should

be large enough to produce topk records that are qualified by the where clause.

Time Decayed Similarity Search

Time-decayed similarity search of vectors involves adjusting semantic similarity based

on time-weighted factors. This means that vectors representing older data, in terms of

vector creation time, have a reduced impact on similarity scores compared to more

recently created vectors, assuming their semantic similarity is identical. The degree of

time decay is quantified by a decay rate, which can be calculated on various time

scales such as weekly, daily, hourly, or by the minute.

When computing the effect of time decay, there are two available modes: power mode

and exponential mode. These modes are specified as "decay_mode=P" for power mode

or "decay_mode=E" for exponential mode. By default, the power mode is used.

In the power decay mode, the distance and similarity score values are adjusted as

follows:

 r = 1.0 – decay_rate

 adjusted_distance = (2.0 * distance)/(1 + pow(r, n))

 adjusted_score = score * pow(r, n)

where “n” is the number of intervals passed between now and the creation time of the

vectors; “pow” is the power operation, that is, the value of rn.

36

In the exponential decay mode, the distance and similarity score are adjusted

according to the following transformations:

 f = decay_rate

 adjusted_distance = (2.0 * distance)/(1 + 1.0/exp(f * n))

 adjusted_score = score/exp(f * n)

where “exp” is the base-e exponential function.

An example of applying time-decay in similarity search is:

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1',

'topk=10,fetch_k=100,type=manhatten_fraction_float,day_decay_rate=0.01,

decay_mode=P')

from vec1

In addition to daily decay considerations, users can use “week_decay_rate”,

“hour_decay_rate”, “minute_decay_rate” , and “second_decay_rate” for weekly, hourly,

by minute, by second decay adjustments.

It should be noted that the decay adjustments are performed on the vectors retrieved

with the “fetch_k” number of vectors. A relatively large number of fetch_k is

recommend to obtain more accurate results. To fully capture the dynamic variations in

time dimension and semantic dimension, it would require the system to rebuild the

vector data structure (HNSW graph) constantly as time progresses. In practice this is

hard or simply impossible. The solution is using a large number of fetch_k and then

adjusting the similarity according to the elapsed time of the selected vectors.

In essence, time-decayed similarity search enables the adjustment of semantic

similarity by considering the temporal dimension, ensuring that older vectors

contribute less to similarity calculations compared to newer vectors with the same

semantic similarity. This approach is valuable for applications where the relevance of

data diminishes over time.

37

Time Cutoff

In specific scenarios, applications may choose to disregard exceptionally old vectors

when conducting similarity searches. JaguarDB offers a solution for this by introducing

the time cutoff parameter in its search functionality. Vectors with creation times

preceding the specified values are automatically excluded from the search results. The

available time cutoff parameters include week_cutoff, day_cutoff, hour_cutoff,

minute_cutoff, and second_cutoff allowing for precise control over the temporal scope

of the search.

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1',

'topk=10,fetch_k=100,type=manhatten_fraction_float,day_cutoff=365,day_d

ecay_rate=0.01,decay_mode=P')

from vec1

The cutoff option can be used independently or together with the decay rate values. In

the above example, vectors that are 366-days older or earlier are ignored in the search.

Anomaly Detection

Jaguar vector database is revolutionizing the way businesses approach anomaly

detection. It provides a structured and efficient means of storing and querying data,

enabling organizations to analyze patterns and deviations with remarkable precision.

This innovative technique not only streamlines the process of anomaly detection but

also enhances the accuracy of identifying potential threats. As the business landscape

continues to evolve in an increasingly digital world, leveraging vector databases for

anomaly detection has become a strategic imperative for enterprises seeking to

safeguard their operations and data from malicious activities.

The API for analyzing anomaly is shown below:

select

38

anomaly(VECCOL,

 'type=DISTANCE_INPUT_QUANTIZATION,[slices=N]')

from store

where the type specifies the distance type and quantization levels of vectors; the

optional parameter slices is the number of slices that divides 4-standard deviations of

the distribution of all the vectors in the vector store. The default value of slices is 20.

Some examples of anomaly detection are listed as follows:

select

anomaly(vc,

 'type=euclidean_whole_float')

from myvector;

select

anomaly(vc,

 'type=euclidean_whole_float, slices=20')

from myvector;

Result:

[{"sigma":"0.1","prate":"0.9"},{"sigma":"0.3","prate":"0.9"},{"sigma":"0.5","

prate":"0.7"},{"sigma":"0.7","prate":"0.7"},{"sigma":"0.9","prate":"0.7"},{"s

igma":"1.1","prate":"0.6"},{"sigma":"1.3","prate":"0.6"},{"sigma":"1.5","prat

e":"0.6"},{"sigma":"1.7","prate":"0.6"},{"sigma":"1.9","prate":"0.6"},{"sigma

":"2.1","prate":"0.5"},{"sigma":"2.3","prate":"0.4"},{"sigma":"2.5","prate":"

0.4"},{"sigma":"2.7","prate":"0.4"},{"sigma":"2.9","prate":"0.4"},{"sigma":"3

.1","prate":"0.4"},{"sigma":"3.3","prate":"0.4"},{"sigma":"3.5","prate":"0.4"

},{"sigma":"3.7","prate":"0.2"},{"sigma":"3.9","prate":"0.2"}]

The API for detecting anomalousness is shown below:

select

39

anomalous(VECCOL,

'type=DISTANCE_INPUT_QUANTIZATION,activation=[sigma1:percent1&sigma2:pe

rcent2&sigma3:percent3&…]')

from store

where the type specifies the distance type and quantization levels of vectors; the

parameter activation specifies one or more “sigma:percent” pairs instructing how much

percent of vector components must be greater than the sigma value in order to be

classified as anomalous. For instance, if activation is “0.3:70&1:50&1.5:30&3:10”, then at

0.3 times of Sigma, there must be more than 70 percent of vector components that

exceed this 0.3*sigma value; and at one Sigma, there must be more than 50 percent of

vector components that exceed this one sigma value; and finally at three Sigma, there

must be more than 10 percent of vector components that exceed this one sigma value.

If any condition is not met, then the query vector is not classified as an anomalous

vector.

select

anomalous(vc,

'type=euclidean_whole_float,activation=[0.3:60&1:50&1.5:30&3:10]')

from myvector;

Result:

{"anomalous":"YES","percent":"74&60&40&12","activation":"0.3:60&1:50&1.5:30&3:10"}

Retrieving Vectors

In cases where users need to retrieve the component values of a vector, the following

API can be used:

40

select

vector(VECCOL, 'type=DISTANCE_INPUT_QUANTIZATION')

from store

where KEY=…

For example,

select vector(v, 'type=manhatten_fraction_short')

from vec1

where fid=’ANjf848223@01’

The utilized KEY in the query must uniquely identify a record housing the vector,

typically involving the exclusive use of the ZeroMove unique ID.

Updating Vectors

The vector components can be updated with two approaches:

update store

set VECCOL:vector='VECTOR_STRING'

where KEY=…

update store

set VECCOL:vector='VECTOR_ID:VECTOR_STRING'

where 1

where VECTOR_ID is the integer value of the vector ID, and VECTOR_STRING is a list

of comma-separated component values.

Deleting Vectors

41

The vector components cannot be deleted separately without deleting the record

containing the vector. A store record can be deleted with the following command:

Delete from store

where KEY=…

The KEY in the above statement must uniquely identify a record housing the vector,

typically the ZeroMove unique ID. In addition, dropping or truncating a store will

delete the associated vectors as well.

Environment

JaguarDB consists of both Server and Client packages. You may install Server and

Client packages either on the same host or on multiple hosts.

System Requirements for Jaguar Server

Hardware：CPU 8 Core, 2GHz, 4GB RAM, 500GB HDD or SSD

Software： Linux, CentOS, RedHat, Ubuntu, x86_64, Docker

File systems： ext4, XFS, ZFS

System Requirements for Jaguar Client

Hardware：CPU 4 Core, 2GHz, 1GB RAM, 256GB HDD or SSD

Software： Linux, CentOS, RedHat, Ubuntu, x86_64, Docker

File systems：ext4, XFS, ZFS

Cloud Framework

42

JaguarDB is a versatile vector database solution that offers comprehensive support for

both public and private cloud environments. Organizations can seamlessly deploy and

manage JaguarDB in either setting, accommodating multiple tenants or business units

within their structure.

Within each tenant, there is the potential for multiple member users. Importantly, the

data of different tenants remains isolated and independent, ensuring data security and

integrity. Conversely, data within a given tenant is shared among all members of that

particular tenant, fostering collaboration and data accessibility. This cloud-based

framework strikes an optimal balance between flexibility and security.

Moreover, within each tenant, there is an essential administrative structure. An admin

account is designated to carry out administrative tasks exclusively for the members

within that tenant. Additionally, a superadmin oversees the entire system of the Jaguar

distributed database, operating and maintaining its overall functionality. Both admin

account types possess their own distinct and secure API keys.

It is crucial to emphasize that all member users are uniquely identified through their

secret API keys, which are associated with their respective tenants. The concept of a

"tenant" is a generalized term that can refer to a business unit, department, or any

distinct group within an organization, providing adaptability to various organizational

structures.

43

In addition to the multi-tenant and multi-cloud framework, JaguarDB presents an

additional framework tailored to internet users. Within this personalized framework,

JaguarDB automatically generates a distinct tenant for each user upon their signup for

a JaguarDB account or any related service. Essentially, every user becomes a self-

contained tenant in their own right. This approach ensures that the data of different

users remains entirely isolated and independent, upholding the highest standards of

security and privacy.

Given the potential for a large number of users in this scenario, the distributed

databases may necessitate the sharding of user accounts as per the specific

requirements of cloud operators. Sharding enables efficient management and scaling

of data to meet the unique demands of the system, contributing to a robust and

adaptable user experience.

JaguarDB Installation

You can use docker pull to install jaguardb image, and docker run to start running

jaguardb in your docker container. You could also download all binary packages for

64-bit machines of Jaguar vector database software and then you can install Jaguar

44

with just one script. You may install the binaries either on the same machine or

different servers. Jaguar Server will listen on TCP/IP port 8888, and the process name

is “jaguar.bin”. The process can be started by any user, each having a different listening

port. Jaguar provides shell scripts to start and stop the Jaguar servers.

Operating Systems

JaguarDB supports Linux 64-bit operating systems. There are Linux jaguar server and

client libraries in the downloaded files.

Linux System

In the docker image, latest Ubuntu system is used. In a Linux 64-bit system (such as

Centos 7 or Ubuntu), you can open a terminal (or putty, xterm, etc.) and saved the

downloaded file in any directory.

JaguarDB Server and Client Setup

There are three methods for setting up JaguarDB on your Linux system.

Docker Container Deployment: The first method involves deploying JaguarDB using

Docker containers. This approach offers ease of management and scalability.

Host-Based Installation and Cluster Configuration: The second approach is to install

JaguarDB individually on each host and then establish connectivity between these

hosts by sharing a common cluster configuration file. This method provides more

control over the installation process and allows for fine-tuned cluster management.

Public Key Authentication and Cluster-Wide Installation Script: The third method

involves setting up public keys on all hosts within the cluster. Subsequently, you can

run an installation script from one node within the cluster to deploy JaguarDB on all

the nodes in the cluster. This approach streamlines the deployment process while

maintaining security through key-based authentication.

45

Consider these options to select the most suistore approach for your specific

requirements when setting up JaguarDB on your Linux system.

Installation Method One

For a quick setup of JaguarDB in one docker container, you can run the following

commands:

 sudo docker pull jaguardb/jaguardb

Then you can start up the JaguarDB process in the docker container:

docker run -d -p 8888:8888 --name jaguardb jaguardb/jaguardb

Once the JaguarDB server process is started in the docker container, you can use the

JaguarDB client terminal to talk to the JaguarDB server in the container:

 docker exec -it jaguardb /home/jaguar/jaguar/bin/jag

The above command logs into an admin account which can create tenants and user

accounts.

 docker exec -it jaguardb /home/jaguar/jaguar/bin/jag -apikey demouser

The Jaguar docker container includes a HTTP gateway server and a vector database

server. In addition, there are programming API in Java, Python, Golang, Nodejs to

query the JaguarDB vector databases. The JaguarDB docker container is based on

Ubuntu 22.04.

Installation Method Two

If you are on macOS or Windows, you must use the Docker image to get JaguarDB up

and running. However, if you are on a Linux system or inside a Linux-based Docker

container, the following command can quickly install and launch the JaguarDB vector

46

store along with its HTTP gateway server by downloading, installing, and starting the

necessary components.

curl -fsSL http://jaguardb.com/install.sh | sh

The JaguarDB component is installed under $HOME/jaguar directory, and the Http gateway is

installed under $HOME/fwww directory.

Installation Method Three

In this method, basically you can download and copy the jaguar-n.n.n.tar.gz program

and install it manually on each host of your database cluster, and then configure the

$JAGUAR_HOME/conf/cluster.conf file which should be shared by all the hosts in the

system. The download link for JaguarDB software is www.jaguardb.com/download.html

and you can follow the link to download the tar ball to your host.

On each host in a cluster, you can perform the following steps:

1) Copy the package jaguar-n.n.n.tar.gz to each host

2) $ tar -zxf jaguar-n.n.n.tar.gz

3) Then related files will be unzipped into jaguar-n.n.n directory:

 $ cd jaguar-n.n.n

 $./install.sh

The script install.sh takes an option “-d <INSTALLATION_PATH>” in order to

install Jaguar to an alternative directory instead of the default $HOME/jaguar

location.

4) In the conf/cluster.conf file, place the IP addresses of all your hosts and copy

this file to the conf directory on every host in the JaguarDB system. You can

start up JaguarDB on all the hosts with the script:

$ $JAGUAR_HOME/bin/jaguarstart_on_all_hosts.sh

47

Installation Method Four

This method uses a downloaded tar ball and a script to install JaguarDB software on

all hosts for your database cluster. To implement this, ensure that you employ

identical account credentials across all hosts. This process will establish trusted public

authorized keys for seamless SSH login, eliminating the need for repetitive password

input.

If you use Linux hosts, on any server in your cluster, you can execute the following

script:

$ tar -zxf jaguar-n.n.n.tar.gz

Then related files will be unzipped into jaguar-n.n.n directory:

$ cd jaguar-n.n.n

If you are operating within a Linux environment with an active sshd server and ssh

client, deploying JaguarDB across the entire cluster of servers can be achieved

effortlessly using a single command:

$./ install_jaguar_database_on_all_hosts.sh -f HOSTFILE

You must create the HOSTFILE which should contain the IP address of all hosts in the

Jaguar database cluster.

Example of HOSTFILE:

Ip_of_node1

Ip_of_node2

Ip_of_node3

Ip_of_node4

Ip_of_node5

The Ip_of_nodeN means the IP (v4) address of the N-th node. Prior to installing Jaguar on

all hosts with this approach, please make sure you have a user account on all the hosts

that have the same password for the user. The HOSTFILE file is very important for

setting up your database cluster. This installation method will set-up trusted public

keys on the hosts that will be included in the cluster. If you accidently make an error

in the installation process, you can execute the following command to uninstall

JaguarDB on all the hosts you have prepared in the HOSTFILE:

 $./uninstall_jaguar_database_on_all_hosts.sh

48

The script install_jaguar_database_on_all_hosts.sh also takes “-d

<TARGETDIRECTORY>” command option to have Jaguar installed on a different

directory other than $HOME/. If a different directory is used to install Jaguar, then

the JAGUAR_HOME environment variable in the bin/jaguarstart, bin/jaguarstatus,

bin/jaguarstop scripts is set to this directory. By default, the JAGUAR_HOME directory

as an environment variable is set to $HOME of the user who is installing Jaguar. Once

it is set, $HOME/.jaguarhome file will contain the path value of $ JAGUAR_HOME.

If you have installed jaguar in the past, later when you are upgrading jaguar with new

releases, the “-f HOSTFILE” will not be required.

File $HOME/.jagsetupssh is created when user’s public keys have been setup on all

hosts in the cluster. If this file does not exist, “setupsshkeys -f CONFFILE” command

is executed to set up the public keys. The setupsshkeys program can be executed

anytime to have the public keys installed in the cluster.

Configuration

The above scripts will copy config file server.conf to $JAGUAR_HOME/conf/ and

jaguar programs to $JAGUAR_HOME/bin/. You should set up your $PATH

environment variable to include the directory $JAGUAR_HOME/bin.

Configuration file $JAGUAR_HOME/conf/server.conf includes the following

parameters:

◼ PORT is the listening port number of Jaguar server.

◼ LISTEN_IP is the IP address that the server will use if there are multiple

network interfaces on the same server host. If there is only one IP address on

the server host, this parameter should be commented out and ignored.

◼ MEMORY_MODE specifies whether more or less memory will be used by jaguar

server. If high is specified, then a little more memory is used by Jaguar. If low

is given, then less memory is used by Jaguar. Default value is high.

◼ REPLICATION is the number of copies for each data record. For every data

record, it is replicated to multiple hosts. The default value is 3. If the number of

servers is less than 3, then the replication number is equal to the number of

servers. Once the system is up and running, the parameter cannot be changed.

For free-trial version, this parameter is always one, i.e., data is not replicated.

◼ BUFF_READER_BLOCKS When scanning a store, blocks of underlying file are

loaded into a buffer which size is specified by this number. Higher number can

boost performance during join or any scan operations. Default value is 4096.

49

◼ JAG_LOG_LEVEL Lower number (min is 0) makes the server generate less

logging messages. A higher number (max is 9) makes the server generate more

debugging information.

◼ LOCAL_BACKUP_PLAN Specifies when and how data is backed up. There are

five types of intervals when duplicate data is saved: 15MIN, HOURLY, DAILY,

WEEKLY, and MONTHLY. When data is saved, it can be either SNAPSHOT or

OVERWRITE mode. SNAPSHOT means each and separate copy of data is saved

with a timestamp (uses more storage space as times goes on). OVERWRITE

means only one copy of data is saved. The format for LOCAL_BACKUP_PLAN

is frequency:policy|frequency:policy|… where frequency is one of 15MIN,

HOURLY, DAILY, WEEKLY, and MONTHLY, and policy is one of SNAPSHOT

or OVERWRITE. If no value is provided for BACKUP_PLAN, then no data is

saved as backup.

◼ REMOTE_BACKUP_SERVER and REMOTE_BACKUP_INTERVAL: These

parameters specify remote backup server IP address and backup interval in

seconds. The remote backup server can be a SAN storage server and must have

enough capacity. If these parameters are provided, all servers in the cluster will

periodically send local data to the remote server for backup.

Configuration file $JAGUAR_HOME/conf/cluster.conf is created from the HOSTFILE

when executing the install_jaguar_database_on_all_hosts.sh script and it includes

the following parameters:

 Host IP of server 1

 Host IP of server 2

 Host IP of server 3

 Host IP of server 4

 ……

For example (conf/cluster.conf):

192.168.1.101

192.168.1.102

192.168.1.103

192.168.1.104

Make sure that cluster.conf is the same on all server hosts. Please note that you cannot

modify cluster.conf. If you want to add more hosts in cluster.conf, you must use the

“addcluster” command. The file server.conf should be the same on all hosts (except

that LISTEN_IP is different in case it is used).

50

Jaguar Server Startup

Linux System

On a Linux system, you may start Jaguar server on all hosts with this command:

$ $JAGUAR_HOME/bin/ jaguarstart_on_all_hosts.sh

Then Jaguar server will listen on port 8888. After Server is started up, you can login

using the “admin” account and “jaguarjaguarjaguar” as password. It is recommended

that you change the password for admin account. You may create more Databases and

User Accounts. The server log file will be in $JAGUAR_HOME/log/ directory.

You may also check the status of Jaguar on all hosts:

$ $JAGUAR_HOME/bin/ jaguarstatus_on_all_hosts.sh

All Jaguar server processes can be stopped with:

 $ $JAGUAR_HOME/bin/ jaguarstop_on_all_hosts.sh

HTTP Gateway Setup

In the installation methods 1 and 2 as described in the installation section of the

manual, the HTTP gateway and the vector database components are installed and

deployed automatically. In the methods 3 and 4, the HTTP gateway server needs to be

manually installed separately.

In tandem with the JaguarDB server, the HTTP gateway provides a universal endpoint

for clients to seamlessly interact with Jaguar servers. This gateway serves as a

proficient proxy, facilitating the relay of commands from clients to the backend

database servers. Consequently, clients are liberated from the constraints of relying on

a specific Linux platform. The HTTP gateway software can be conveniently obtained

free of charge from the following link:

 http://www.jaguardb.com/download.html

51

Users are encouraged to adhere to the installation instructions bundled within the

package. To set up the Jaguar HTTP gateway on any Linux system, users can follow

these straightforward steps:

1) Use the 'wget' command to acquire the necessary files:

wget http://www.jaguardb.com/download/fwww_n.n.n.tar.gz

2) Execute the './install.sh' script to initialize the installation process

3) Configure the settings within '$HOME/fwww/conf_dir/fwww.conf'

4) Navigate to the '$HOME/fwww/bin_dir' directory and run './start_all_servers.sh'

In the configuration file fwww.conf, defining the CUSTOM_URL variable will add an

extra button to the left-side command column in the web interface. This convenient

feature enables users to seamlessly integrate a custom URL into the gateway’s

graphical interface. Additionally, the CUSTOM_TITLE variable, which specifies the

button's label, must be defined if CUSTOM_URL is provided.

It is important to note that the gateway process should ideally run on the same host as

one of the Jaguar database servers, although it can also be deployed on separate hosts

within a local area network for enhanced flexibility. The value of configuration

parameter JAGUAR_SUPER_ADMIN_API_KEY in the fwww.conf file should be read

from the configuration file “$JAGUAR_HOME/conf/server.conf” on one of a JaguarDB

servers. When you open the file server.conf, you will see SERVER_TOKEN and you can

use its value for the JAGUAR_SUPER_ADMIN_API_KEY entry in the fwww.conf

configuration file. Note that JaguarDB server should be installed prior to setting up the

HTTP gateway. If JaguarDB server is restarted, you should restart the http server.

Once the http gateway is set up, you can point your browser at:

 http://<IP>:8080/login.html

to login to your account and manage your data, where <IP> is the IP address of the

server where the fwww http server is installed.

52

You can contact your tenant admin to get our API key. The admin can use the

following command in jql.bin (or jag) terminal program to create user accounts for

their users:

$JAGUAR_HOME/bin/jag

jaguardb> makeapikey;

jaguardb> createuser <APIKEY> <EMAIL> <LEVEL> <TENANT>;

The value of LEVEL must be one of 100, 1000, 2000, 3000, 4000, and 5000. The value

of TENANT must be the same as that of the admin API key. If the admin is the

superadmin, then the TENANT can be any (if it does not exist, the system will create a

new tenant). The superadmin account can also create a new tenant with the following

command:

53

 jaguardb> create tenant NEW_TENANT;

The "jaguardb-http-client" package is readily accessible to clients operating on a

multitude of platforms, including macOS, Windows, Linux, iOS, and Android. All they

need to do is install machine learning packages on their local systems. To connect to

the JaguarDB server, clients simply need to interface with an HTTP gateway server,

which effectively functions as a proxy for the JaguarDB server. This design confers

substantial flexibility to clients, accommodating those operating on diverse systems.

54

Jaguar Architecture

The Distributed Jaguar Vector Database system boasts an immensely scalable design

founded on a cluster-based architecture. The scaling of JaguarDB revolves around

clusters, each representing a coherent group of nodes. The system seamlessly

accommodates the addition of new clusters at any point, imparting flexibility without

disruptions. To fortify data reliability, three replicas are available, ensuring

redundancy. For optimal write and read speeds, data distribution occurs across server

nodes through sharding. Notably, any Jaguar client can effortlessly establish

connections to any Jaguar server.

Data synchronization occurs in real-time across all Jaguar servers, sustaining updated

information consistency. The core strength of the Jaguar system lies in its linear

scalability; deploying additional server hosts yields proportional increments in storage

capacity and performance, following a nearly linear trajectory.

55

The Shared-Nothing Master-Master architecture in JaguarDB empowers all hosts to

efficiently receive, store, and facilitate data reads. This innovative design fosters a

distributed data environment where every host participates actively, culminating in

enhanced data input/output speeds and seamless linear scalability. By leveraging the

collective capabilities of multiple hosts, JaguarDB optimizes AI data management,

ensuring smoother operations and accommodating growing data demands, either

structured data or large volume unstructured data such as media files.

JaguarDB Server is versatile and can be effortlessly deployed on a wide range of Linux

platforms, including but not limited to Ubuntu, Red Hat, Fedora, and others. The

server software is compatible with any 64-bit Linux distribution. Clients, on the other

hand, enjoy flexibility and compatibility as they can initiate connections from various

platforms, provided that Python 3 is installed, and the jaguardb-http-client package is

available. The python package can be installed with the pip command.

56

Applications have the flexibility to bypass the HTTP gateway and establish direct

connections with the JaguarDB server when they are operating on the Ubuntu 22.04

platform. Additionally, libraries are provided to empower clients with the capability to

communicate directly with the JaguarDB server for seamless data access and

management.

Client programs that focus on AI applications should install the jaguardb-socket-client

package with the pip install command. The package requires the client to be based on

Ubuntu 22.0 platform as of JaguarDB release 3.3.8.

In a JaguarDB cluster, each node operates in a precise sequence of steps. Initially, JLog

records incoming vector data, followed by DLog that tracks changes in vector data

prepared for replication nodes, offering resilience against system or network

57

disruptions. Meanwhile, JMem, an in-memory structure, temporarily stores vector in a

data store of HNSW structure, which stands for "Hierarchical Navigable Small World".

The HNSW store is a data structure and algorithm used for building and searching in

approximate nearest neighbor search (ANN) systems. The concept of HNSW is

designed to efficiently perform similarity searches in high-dimensional spaces.

HNSW stores and other data caches are frequently flushed to vector database files.

Jstore encapsulates both indexed database files and their fundamental file

management elements. While not depicted in the figure, JIndex corresponds to Jstore,

allowing a single store object to own multiple indexes. Introducing JFile, a distinct

module, is designed for user-initiated media file uploads. JFile accommodates external

user files, maintaining independence from internal files associated with stores and

indexes.

Server Topology

All Jaguar server hosts are specified in the conf/cluster.conf file which contains all the

IP addresses of the server hosts. Each Jaguar server maintains network communication

channels to other servers for schema changes. Among the servers control messages are

exchanged for synchronization of server status. Each server manages store data locally

for data writes and reads.

58

High Availability

In a multi-node deployment configuration, primary nodes assume responsibility for a

specific data record and are complemented by replica nodes, forming a fault-tolerant

setup. Should the primary node encounter an outage, the replicas retain an identical

copy of the data record. Subsequently, when the primary node is rejuvenated and

reverts to its standard operational state, the replicas initiate a data recovery process to

synchronize any divergences. This data recovery encompasses both alterations in

metadata and changes in raw data, encompassing a provision for maintaining up to

three replicas for each individual data record. Throughout instances of primary node

downtime, the system upholds its regular functionality for data read and write

operations, thereby preserving data access continuity.

Architected with resilience in mind, the system adheres to predefined replication

factors for enhanced fault tolerance. For instance, with a replication factor set at two,

the system demonstrates robustness by tolerating failures of up to 33% of all nodes.

Similarly, a replication factor of three extends this resilience to tolerate failures of up

to 66% of all nodes. It is critical to underscore the significance of proactive monitoring

and prompt remediation in the event of node failures. Given that the data recovery

process is inherently iterative and time-intensive, promptly restarting failed nodes is

59

essential to streamline the catch-up process and reinstate the system's full operational

capacity within an acceptable timeframe.

System Configuration

Mount noatime

File Input and Output (IO) is one of the most important performance indicators for

Database. We suggest that you turn off the access time option for your file system.

You may disable this in /etc/fstab as root :

 defaults,noatime

Resource limits

Maximum Number of Open Files

Small number of maximum open files and number of processes and threads is a

common problem in Linux systems. We suggest you increase the parameters by

adding the following lines with root account to /etc/security/limits.conf

* hard nofile 1000000
* soft nofile 1000000

Maximum Number of Threads or Processes Per User

/etc/security/limits.conf:

* hard nproc 500000
* soft nproc 500000

Maximum Kernel Threads

/etc/sysctl.conf:
kernel.threads-max = 1000000

Maximum Number of Process IDs

/etc/sysctl.conf:
kernel.pid_max = 1000000

60

Please note the if there are config files in /etc/security/limits.d/ directory. The settings

in the config files under this directory will override the settings in the

/etc/security/limits.conf file. Please make sure you make the changes in the files under

/etc/security/limits.d/. Please do not set nproc to an extremely high number or to

“unlimited” which could cause users unable to login to the system.

Once you save the file, please reboot the system. The parameters will take effect after

reboot. (If you wish not to reboot the system, please execute “sysctl -p” and close the

old terminal and open a new window terminal)

Installation Verification

After you install the Jaguar Server, please make sure：

1) No other service or processes use port 8888

2) Directory $JAGUAR_HOME/ was created

3) Following files exist and is executable:

$JAGUAR_HOME/bin/jaguar.bin

$JAGUAR_HOME/bin/jaguarstart (start local jaguar)

$JAGUAR_HOME/bin/jaguarstop (stop local jaguar)

Test Run

Test Approaches

There are two ways to interact with Jaguar servers:

1. Interaction between Jaguar Client and Server side:

Test by running the $JAGUAR_HOME/bin/jag client, typing SQL-like commands. Then

the Server will respond when receiving queries.

2. APIs calls

Test by writing programs which calls Jaguar APIs to perform related data Select, Insert

operations. Client API bindings include Java, C++, Python, PHP, Go, NodeJS languages.

61

Programming Guide

There are example programs in $JAGUAR_HOME/doc directory which can be used as

a guide for developers.

Shell

$ $JAGUAR_HOME/bin/jag –u USERNAME –p PASSWORD –h HOST:PORT –d DATABASE

Example: $ $JAGUAR_HOME/bin/jag –apikey <KEY> –h hostip:8888 –d mydb

jaguardb> create store photos (

 key: zid zuid,

 value: vector v(1024, ‘cosine_fraction_short,euclidean_fraction_byte’)

 fname char(128));

jaguardb> select similarity(v,‘0.1,0.2,0.4’,

 ‘topk=10,type=euclidean_fraction_byte’)

 from tvec;

Curl

Using the “curl” commands necessitates configuring your HTTP server with the Jaguar fwww

package. Initially, you must execute a "login" request to obtain a valid token for

communication with the server. It is advisable to perform a “logout” request afterward for

enhanced security and efficient resource utilization. In the interim, you can execute various

requests using the “query” command.

#!/bin/bash

#apikey="20231119211753587j05a208561d6e87fdb3fafd065390f5be0@000"

apikey=`cat ~/.jagrc`

62

echo "login ..."

r=`curl -s --request POST --url "http://192.168.1.88:8080/fwww/" \

 -d "{\"query\": \"login\", \"apikey\": \"$apikey\" }"`

echo "$r"

#r={"access_token":"906305a5c645dcf83eaf05068b63b1ee139b0","token_type":"Bearer"}

token=`echo $r|cut -d'"' -f4`

echo "token=[$token]"

echo "drop store myteststore ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"drop store if exists myteststore\" }"

echo

echo "create store myteststore ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"create store myteststore (v vector(1024,

'cosine_fraction_float'), v:text char(1024), a int)\" }"

echo

echo "insert ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"insert into myteststore values ('0.1,0.2,0.3','text 1 here',

'100')\" }"

echo

echo "insert ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"insert into myteststore values ('0.8,0.1,0.2','text 2 here',

'200')\" }"

63

echo

echo "select similarity ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"select similarity(v,

'0.6,0.2,0.3','topk=1,type=cosine_fraction_float') from myteststore\" }"

echo

echo "select similarity with filter(where) ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"select similarity(v,

'0.6,0.2,0.3','topk=1,type=cosine_fraction_float') from myteststore where a >=

'100'\" }"

echo

echo "logout ..."

curl -s --url "http://192.168.1.88:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"logout\" }"

C++/C

#include <JaguarAPI.h>

JaguarAPI jdb;

jdb.connect(host, port, userapikey, dbname);

jdb.execute(“insert into photos values (‘0.1,0.2,0.3’, ‘photo1.jpg’) “);

jdb.query(“select * from photo1;“);

while (jdb.fetch()) {

 jdb.printRow();

 char *p = jdb.getValue(“v”);

64

 printf(“vid=%s\n”, p);

 free(p);

 p = jdb.json();

 printf(“JSON string=[%s]\n”, p);

}

Java

System.loadLibrary("JaguarClient");

Jaguar jdb = new Jaguar();

boolean rc = jdb.connect("127.0.0.1", 8888, "testapikey", "test");

jdb.execute("insert into tab (uid, addr) values (‘Jill’, ‘333 B Ave, CA’);");

jdb.query("select * from tab;");

while(jdb.fetch()) {

 val = jdb.getValue("uid");

 m1 = jdb.getValue("m1");

 System.out.println("uid: " + val + " m1: " + m1);

 }

jdb.close();

Java JDBC

DataSource ds = new JaguarDataSource("127.0.0.1", “8888”, "mydb");

Connection connection = ds.getConnection("testuserapikey");

Statement statement = connection.createStatement();

statement.executeUpdate("insert into tab (uid, addr) values (‘Jill’, ‘333 B Ave, CA’);");

Statement statement = connection.createStatement();

65

ResultSet rs = statement.executeQuery("select * from tab;");

String val;

String m1;

while(rs.next()) {

 val = rs.getString("uid");

 m1 = rs.getString("m1");

 System.out.println("uid: " + val + " m1: " + m1);

 }

rs.close();

statement.close();

Scala

import com.jaguar.jdbc.internal.jaguar._

System.loadLibrary("JaguarClient");

val jdb = new Jaguar();

val rc = jdb.connect("127.0.0.1", “8888”, "testapikey", "test", "", 0);

jdb.execute("insert into tab (uid, addr) values (‘Jill’, ‘333 B Ave, CA’)");

jdb.query("select * from tab;")

while(jdb.fetch()) {

 val u = jdb.getValue("uid");

 val m1 = jdb.getValue("m1");

 println("uid: " + val + " m1: " + m1);

 }

jdb.close();

Python

66

Direct Access

This approach takes advantage of the C++ shared library in “jaguarpy” package and makes

direct access to the JaguarDB server through the socket in the package.

Make sure the environment variable PYTHONPATH points to the directory where jaguarpy.so

library file exists:

 export PYTHONPATH=$JAGUAR_HOME/lib

export LD_LIBRARY_PATH=$JAGUAR_HOME/lib

Then in your python program:

import jaguarpy

jdb = jaguarpy.Jaguar()

rc = jdb.connect("192.168.2.200", 8888, "apikey", "dbname")

jdb.execute("insert into tab (uid, addr) values (‘Jill’, ‘333 B Ave,

CA’);");

jdb.query(“select * from t1;“);

while jdb.fetch():

 jag.printRow();

 u = jdb.getValue(“uid”);

 a = jdb.getValue(“addr”);

 ds = 'uid is ' + repr(u) + ' addr is ' + repr(a)

 print(ds);

With jaguardb-socket-client Package

This approach works similarly to the direct access, except it facilitates the installation

of client packages with a simple pip package named “jaguardn-socket-client”. Users can

install the package on any node that runs on an Ubuntu 22.04 platform.

67

The package can be installed:

 pip install -U jaguardb-socket-client

export LD_LIBRARY_PATH=$HOME/.local/jaguardb

export PYTHONPATH=$HOME/.local:$LD_LIBRARY_PATH

apikey = jag.getApikey()

jag.connect(apikey, '127.0.0.1', 8888, 'vdb')

q = "drop store vdb.mystore"

jag.execute(q)

q = "create store vdb.mystore (key: zid zuid, value: v vector(1024,

'cosine_fraction_float'), v:f file, v:t char(1024))"

jag.execute(q)

q = "select similarity(v, '" + comma_sepstr + "', 'topk=1,

type=cosine_fraction_float, with_score=yes, with_text=yes') "

q += " from vdb.mystore"

jag.query(q)

jag.fetch()

jag.close()

With jaguardb-http-client Package

The package can be installed:

 pip install -U jaguardb-http-client

As described in the “curl” commands, this approach requires the fwww http server running to

handle http requests. It first requires a “login” request and finally a “logout” request. For

68

smaller-sized commands, consider using the get() method, as GET requests are typically faster

than the POST method employed by the query() function.

import requests, json, sys

from sentence_transformers import SentenceTransformer

from jaguardb.JaguarHttpClient import JaguarHttpClient

url = http://192.168.10.88:8080/fwww/

jag = JaguarHttpClient(url)

apikey = jag.getApikey() # or you can use “demouser”

token = jag.login(apikey)

query = "create store vdb.mystore (key: zid zuid, value: v vector(1024,

'cosine_fraction_float'), v:f file, v:t char(1024))"

response = jag.get(query, token)

jag.logout(token)

For more information, please refer to https://github.com/fserv/jaguar-sdk web site.

PHP

To program PHP with Jaguar, please use root or sudo and copy conf/jaguar.ini to

/etc/php.d directory (Centos), or to /etc/php5/mods-available (Ubuntu), or to other PHP

required directory. Also copy lib/jaguarphp.so and lib/libJaguarClient.so to proper

directory.

$ php -i | grep additional Gives directory where jaguar.ini should be copied to.

$ php -i |grep extension_dir Gives directory where jaguarphp.so should be copied to.

Example:

 Centos # cp -f conf/jaguar.ini /etc/php.d/

 Centos # cp -f lib/jaguarphp.so /usr/lib64/php/modules

 Ubuntu # cp -f conf/jaguar.ini /etc/php5/mods-available/

69

 Ubuntu # cp -f lib/jaguarphp.so /usr/lib/php5/20121212

 # cp -f lib/libJaguarClient.so /usr/lib

<?php

$jdb = new Jaguar();

$jdb->connect("192.168.2.200", 8888, "apikey", "dbname");

$jdb->execute("insert into tab (uid, addr) values (‘Jill’, ‘333 B Ave, CA’);");

$jdb->query(“select * from t1;“);

While (jdb.fetch()) {

 $jag->printRow();

 $u = $jdb->getValue(“uid”);

 $a = $jdb->getValue(“addr”);

 print(“uid=$u addr=$a\n”);

}

…

?>

NodeJS

To use Ruby client API, make sure lib/jaguarnode.node exist in the $JAGUAR_HOME/lib

directory:

var homedir=process.env.JAGUAR_HOME;

var libname = homedir + "/jaguar/lib/jaguarnode";

const jaguarnode = require(libname)

var jaguar = new jaguarnode.JagAPI();

jdb.connect("127.0.0.1", 8888, "adminapikey", "test");

jdb.execute("insert into tab (uid, addr) values (‘Jill’, ‘333 B Ave, CA’);");

jdb.query(“select * from t1;“);

70

while (jdb.fetch()) {

 jdb.printRow();

 var u = jdb.getValue(“uid”);

 var a = jdb.getValue(“addr”);

 process.stdout.write("uid: " + uid + " addr: " + addr + "\n");

end

Go

To use Go language client API, please go to the src/golang directory in

github.com/datajaguar/jaguardb and read the readme file. The jaguargo directory contains the

interface files between C++ and golang. The script compile.sh is a program to compile

jaguargo package imported by the main.go program as an example.

main.go file:

package main

import(

 "jaguargo/jaguargo"

 "strconv"

 "flag"

 "fmt"

 "time"

 "os"

)

func main() {

 flag.Parse()

 ports := flag.Arg(0)

 jdb := jaguargo.New()

 fmt.Printf("connecting to jaguardb 127.0.0.1 port=%s\n", ports)

 port, err := strconv.ParseUint(ports, 0, 64)

 if err != nil {

 fmt.Printf("error\n")

 os.Exit(1)

71

 }

 jdb.Connect("127.0.0.1", uint(port), "admin_api_key", "test")

 jdb.Execute("drop store if exists gotab123")

 jdb.Execute("create store gotab123 (key: uid char(32), value: addr char(128))")

 jdb.Execute("insert into gotab123 values ('id1001', '123 W. Washington Blvd')")

 jdb.Execute("insert into gotab123 values ('id1002', '225 E. Sunshine St')")

 jdb.Query("show databases")

 fmt.Printf("List of databases:\n")

 for {

 rc := jdb.Fetch()

 if rc > 0 {

 jdb.PrintRow()

 } else {

 break

 }

 }

 jdb.Query("show stores")

 fmt.Printf("List of stores:\n")

 for {

 rc := jdb.Fetch()

 if rc > 0 {

 jdb.PrintRow()

 } else {

 break

 }

 }

 time.Sleep(1*time.Second)

 jdb.Query("select * from gotab123")

 fmt.Printf("Data in store gotab123:\n")

 for {

 rc := jdb.Fetch()

 if rc > 0 {

72

 jdb.PrintRow()

 } else {

 break

 }

 }

 jdb.Close()

}

To execute the main.go program:

export LD_LIBRARY_PATH=$HOME/jaguar/lib:/home/jaguar/jaguar/lib:/usr/local/gcc-7.1.0/lib64

unset GOPATH

export GO111MODULE=on

go run main.go 8888

Query with Index

Suppose store mystore contains key: uid and value: v1, v2, v3. If you need to query data in

mystore according to a non-key column (or several columns), then you can create an index on

the column(s) and query mystore by using the index. For example:

create index mystore_idx23 on mystore (v2, v3);

Shell

jaguar> select * from mystore_idx23 where v2=’somevalue' and

v3=’somevalue’;

C++/C

jdb.query(“select * from mystore_idx23 where v2 >= ’somevalue' ; “);

73

while (jdb.fetch()) {

 jdb.printRow();

 char *p = jdb.getValue(“uid”);

 printf(“uid=%s\n”, p); free(p);

 p = jdb.json();

 printf(“JSON string=[%s]\n”, p);

}

Java JDBC

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("select * from mystore_idx23 where v2 >= ‘myvalue’;");

String val;

String m1;

while(rs.next()) {

 val = rs.getString("uid");

 m1 = rs.getString("m1");

 System.out.println("uid: " + val + " m1: " + m1);

 }

 rs.close();

statement.close();

Client API Reference

The following methods are supported for C++, Java, Scala, Python, PHP, NodeJS and other API

calls:

1. bool connect(String host, int port, String userapikey, String db)

Connects to server. Returns True for success, False for failure.

2. bool execute(String command)

74

Execute a data modification command string such as create store, drop store, insert

commands. The command must not contain a “select” query string where multiple

rows may be expected. Multiple statements, delimited by the ‘;’ character, can be placed

in the execute command. For example, execute(“insert into t123 values (‘1’, ‘2’); insert

into t345 values (‘3’, ‘5’); update t888 set v=’3’ where uid=’234’; delete from t69 where

uid=’333’;”). Allowed commands include insert, update, delete, alter, drop, and truncate.

3. bool query(String query)

Select data from server. This is where the “select” statement should be used.

4. Bool fetch()

Return result data to the client. With a while loop around this call, you can obtain the

selected result data row by row. When there is no more data, the fetch() call returns

false.

5. void printRow()

Print out row data on standard output.

6. void close()

Closes the connection to server and frees up relevant memory resources.

7. String getDatabase()

Returns the database name of current client session.

8. bool hasError()

Tests if there is error from the query command.

9. String error()

If hasError() is true, this call returns the error string.

10. String getLastZuid()

This function returns the UUID string of the last insert operation if the store has zuid type in its

first column and the column is a key field. If the first column is not a key field, then this function

returns empty string.

11. String getNthValue(int col)

Returns the value of the N-th column (starting from 1) in the current row (inside the

reply while loop).

12. String getValue(String columnName)

Returns the value of a column of name columnName. For example, is “uid” is the

column name of a store, then getValue(“uid”) returns the value of uid column in the

current row.

75

13. String getMessage()

Return the output data in the current row. Sometimes the current row data does not

have any column structure, with only a raw message. For example, “desc store;” will

output a text message describing the format of a store. In such cases, getMessage()

should be called.

14. String json()

Return the JSON string for a data record or a group of records.

15. long getLong(String columnName)

If the column is known to be long integer type, this method returns the long integer

value.

16. double getFloat(String columnName)

If the column is known to be numerical double type, this method returns the double

value.

17. int getColumnCount()

Returns the number of columns in current row.

18. String getColumnName(int col)

Returns the string name of the col-th column (starting from 1).

19. int getColumnType(int col)

Return the numeric column type of col-th column (per JDBC definition)

20. String getColumnTypeName(int col)

Return the string column type of col-th column (per JDBC definition)

21. String getstoreName(int col)

Return the store name of col-th column

CURL API

Login to get a valid session token:

76

curl --request POST --url "http://<IP>:8080/fwww/" \

 -d "{\"query\": \"login\", \"apikey\": \"$myapikey\" }"`

Make any requests:

curl --url "http://<IP>:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"any SQL-like query here\" }"

Logout of the session:

curl --url "http://<IP>:8080/fwww/" --request POST \

 --header "Authorization: Bearer $token" \

 -d "{\"query\": \"logout\" }"

Python REST API

import requests, json, sys

from sentence_transformers import SentenceTransformer

from jaguardb.JaguarHttpClient import JaguarHttpClient

Create Client Object:

jag = JaguarHttpClient(url)

Read in ApiKey:

If API key is not provided by the user, the following method can be called to find

available API key on the current host.

77

apikey = jag.getApikey()

Login:

The following function call authenticate the API key and returns a valid session token:

token = jag.login(apikey)

Requests:

With the session token obtained from the “login” request, any requests can be made to

the server:

 q = "any create/insert/update/delete/select commands here"

 response = jag.query(q, token)

Upload File:

jag.postFile(token, fpath, position)

Before executing an “insert” statement in which there are files to be uploaded to the

Jaguar server, this command first reads and sends the file to the server. The parameter

“position” specifies the position of the file column in the insert values, starting from 1.

Then in the insert command:

q = "insert into vdb.store values ('...’, ‘...’, ‘…’)"

jag.post(q, token, True) // True tells there are files to be transferred

Logout:

Remember to logout for security and resource reuse:

78

jag.logout(token)

LangChain Integration

LangChain is a framework for building LLM-powered applications. It helps developers

chain together interoperable components and third-party integrations to simplify AI

application development — all while future-proofing decisions as the underlying

technology evolves. The JaguarDB vector store is integrated with the LangChain

development frame. The main URL for the LangChain github is

 https://github.com/langchain-ai/langchain

and the Jaguar vector store is under:

https://github.com/langchain-ai/langchain

 ->libs/community/langchain_community/vectorstores/jaguar.py

The documentation is under:

 https://github.com/langchain-ai/langchain

 -> docs/docs/integrations/vectorstores/jaguar.ipynb

LLamaIndex Interation

LlamaIndex (GPT Index) is a data framework for your LLM application. Building with

LlamaIndex typically involves working with LlamaIndex core and a chosen set of

integrations (or plugins). The main github repository is at:

https://github.com/run-llama/llama_index

79

The Jaguar vector store is at:

llama-index-integrations/vector_stores/llama-index-vector-stores-

jaguar/llama_index/vector_stores/jaguar/base.py

NodeJS API

JaguarDB provides API to Node.js developers. The JaguarNodeClient class and

methods can be installed with the following command on a Linux system:

 npm install jaguardb-node-client

Developers are recommended to read the documents in github.com/fserv/jaguar-sdk

javascript directory.

Operation

Remote Backup

Setup on the first Jaguar server host

The data stored in all the servers of Jaguar cluster can be backed up in a remote server

(such as a high-capacity storage server) frequently. In conf/server.conf, you can assign

values to the REMOTE_BACKUP_SERVER and REMOTE_BACKUP_INTERVAL

parameters to enable this feature. REMOTE_BACKUP_SERVER should point to the IP

address of the remote backup server, and REMOTE_BACKUP_INTERVAL is the time

interval (in seconds) specifying how often the backup is performed. This configuration

needs to be completed on the first jaguar server host only. It is not necessary to set it

up on other jaguar server hosts. The file conf/syncpass.txt (chmod 600 as user jaguar)

should just contain the password (single word) of jaguar user to connect to the remote

80

backup server host. This password can be different from jaguar’s system account

password.

File conf/syncpass.txt:

mypassword888

Setup on the remote backup server host

On the remote backup server, rsync daemon should be setup correctly. The config file

/etc/rsyncd.conf should have the following information:

uid = jaguar

gid = jaguar

use chroot = yes

max connections = 1000

pid file = /var/run/rsyncd.pid

log file = /var/log/rsyncd.log

exclude = lost+found/

transfer logging = yes

timeout = 900

ignore nonreadable = yes

dont compress = *.gz *.tgz *.zip *.z *.Z *.rpm *.deb *.bz2

read only = false

write only = false

[jaguardata]

 path = /home/jaguar/jaguarbackup

 comment = Jaguar repository (requires authentication)

 auth users = jaguar

 strict modes = false

 secrets file = /etc/rsyncd.secrets

81

where “[jaguardata]” must be kept exactly as it is shown above but “path =

/home/jaguar/jaguarbackup” can be any directory you wish to use. This directory should be

owned by ‘jaguar’ user.

mkdir -p /home/jaguar/jaguarbackup

chown -R jaguar.jaguar /home/jaguar/jaguarbackup

In the file /etc/rsyncd.secrets (chmod 600 as root), you should have the password for jaguar

user (username:password format):

 jaguar:mypassword888

In /etc/rsyncd.secrets there can be many lines specifying username and password for rsync

daemon server to authenticate. If someuid takes the value of jaguar, i.e., rsync daemon will be

run as user jaguar. The password ‘mypassword888’ is just an example. You should use your

own password and is the same as the one in Jaguar server’s conf/syncpass.txt.

Restart the rsync daemon server on this host after you have made the changes. On

CentOS/Redhat systems, the command to restart rsync daemon server as root is:

 # systemctl restart rsyncd

Data Types

Currently Jaguar supports these data types:

1. Character string

char(length) -- it is a fixed length character string in key columns. It is a variable

length string in the value columns. It is same as varchar(length).

2. Boolean

boolean -- one byte integer field containing a single digit

3. Integer

int or integer - integer between -9999999999 and +9999999999

82

4. Big integer

bigint -- integer between -9999999999999999999 and +9999999999999999999

5. Small integer

smallint -- integer between -99999 and +99999

6. Tiny integer

tinyint – integer between -999 and +999

7. Medium integer

mediumint – integer between -9999999 and +9999999

8. Float

float(L,d) -- a float decimal number with total of L digits and d number of digits after

the decimal point.

9. Double

double(L,d) -- similar to float except in internal representation and calculation, it is

treated as double precision float number.

numeric(L,d) – same as double(L,d)

decimal(L,d) -- same as double(L,d)

10. LongDouble

longdouble(L,d) -- similar to double except in internal representation and calculation,

it is treated as a long double column.

11. DateTime

datetime – a 16 digits time value in terms of microseconds. When a time data is loaded

or inserted into Jaguar, the following format must be used:

 YYYY-MM-DD hh:mm:ss[.uuuuuu] [+HH:MM]

 YYYY-MM-DD hh:mm:ss[.uuuuuu] [-HH:MM]

Where YYYY is the 4-digit year symbol, such as 2025

MM is the month (1-12), such as 10

DD is the date in 1-31, such 04

hh:mm:ss is hour:minute:seconds such as 02:23:21

.uuuuuu is optional fractional seconds (or microseconds)

+HH:MM and -HH:MM are optional time zone difference from GMT standard time.

83

If no time zone information is given, then the input string is taken as local time of the

client. If the client just wants to insert local time string, then the time zone string is not

necessary. The time zone info is only used when the client wants to insert time string

of another time zone.

Example:

From California, USA:

 insert into sa (uid, sttime) values (12,‘2014-11-23 16:32:21 -08:00’);

 insert into sd (devid, ltime) values (1232, ‘2015-10-23 13:32:21.234019’);

 select * from sales where sdate > ‘2014-12-10 03:12:23’;

12. DateTimeNano

datetimenano – similar to datetime except this has granularity of nanoseconds. When a

datetimenano column is loaded or inserted into Jaguar, the following format must be

used:

 YYYY-MM-DD hh:mm:ss[.nnnnnnnnn] [+HH:MM]

YYYY-MM-DD hh:mm:ss[.nnnnnnnnn] [-HH:MM]

13. DateTimeSec

 datetimesec – similar to datetime except this has granularity of seconds. When a

datetimesec column is loaded or inserted into Jaguar, the following format must be used:

 YYYY-MM-DD hh:mm:ss [+HH:MM]

YYYY-MM-DD hh:mm:ss [-HH:MM]

 insert into sd (devid, dtcol) values (1232, ‘2022-10-23 13:32:21’);

 select * from sales where dtcol > ‘2014-12-10 03:12:23’;

14. DateTimeMill

 datetimemill – similar to datetime except this has granularity of milliseconds. When a

datetimemill column is loaded or inserted into Jaguar, the following format must be used:

 YYYY-MM-DD hh:mm:ss[.nnn] [+HH:MM]

YYYY-MM-DD hh:mm:ss[.nnn] [-HH:MM]

 insert into sd (devid, dtcol) values (1232, ‘2022-10-23 13:32:21.123’);

 select * from sales where dtcol > ‘2014-12-10 03:12:23.123’;

84

15. Date

The date type has input and output format: YYYY-MM-DD

Example:

insert into sales (uid, datecol) values (1234, ‘2015-03-12’);

select * from sales where datecol=’2015-12-23’;

16. Time

time – type for tracking hour, minute, second, and microsecond. The input format of

time column is:

 HH:MM:SS[.uuuuuu] -- where uuuuuu represents microseconds

17. TimeNano

timenano --- type for tracking hour, minute, second, and nanosecond. The input format

of timenano column is:

 HH:MM:SS[.nnnnnnnnn] -- where nnnnnnnnn represents nanoseconds

18. Timestamp

timestamp -- same as datetimestamp with precision of microseconds. Both can take

input in ‘yyyy-mm-dd HH:MM:SS.123456 HH:MM’ format or simply a number

representing microseconds since the epoch (1 January 1970 00:00:00), for example

1482000884000000. The difference between timestamp and datatime is that during

insertion of this column data, if no value is provided by the user, the current local time

with precision of microseconds is automatically generated and inserted into the store

for the timestamp column.

19. TimestampNano

timestampnano -- same as datetimestampnano with precision of nanoseconds. Both can

take input in ‘yyyy-mm-dd HH:MM:SS.123456789 HH:MM’ format. The difference is

that during insertion of this column data, if no value is provided by the user, the

current local time with precision of nanoseconds is automatically generated and

inserted into the store for the timestampnano column.

20. TimestampSec

timestampsec -- same as datetimestampsec with precision of seconds. Both can take

input in ‘yyyy-mm-dd HH:MM:SS HH:MM’ format. The difference is that during

insertion of this column data, if no value is provided by the user, the current local time

85

with precision of seconds is automatically generated and inserted into the store for the

timestampsec column.

21. TimestampMill

timestampmill -- same as datetimestampmill with precision of milliseconds. Both can

take input in ‘yyyy-mm-dd HH:MM:SS[.nnn] HH:MM’ format. The difference is that

during insertion of this column data, if no value is provided by the user, the current

local time with precision of milliseconds is automatically generated and inserted into

the store for the timestampmill column.

22. Real

Real – the data type is same as a double(38,8), double of total 38 digits and 8 digits

after the decimal point.

23. Text

Text -- is the same as char(1024)

24. TinyText

TinyText -- is the same as char(256)

25. MediumText

MediumText -- is the same as char(2048)

26. LongText

LongText -- is the same as char(10240)

27. Blob

Blob -- is the same as char(1024)

28. TinyBlob

TinyBlob -- is the same as char(256)

29. MediumBlob

MediumBlob -- is the same as char(2048)

30. LongBlob

LongBlob -- is the same as char(10240)

31. String

String – is the same as char(64)

32. Varchar

Varchar(N) – is same as char(N)

86

33. Bit

Bit – is one byte column, with value of 1 or 0

34. Eum

COLUMN enum (‘val1’, ‘val2’, ‘val3’, …) -- A column can take certain values only

35. File

File – is used to store any file (photo, image, audio, video, doc, ppt, pdf, etc). It has no

limit in size.

36. Spatial Data Types

Please refer the Spatial Data Management chapter in this manual.

37. Range

Range(datetime) -- a range of datetime with begin and end data

 Format: “YYYY-MM-DD HH:MM:SS[.nnnnnn]”

Range(datetimesec) -- a range of datetime with begin and end data

 Format: “YYYY-MM-DD HH:MM:SS”

Range(datetimemill) -- a range of datetime with begin and end data

 Format: “YYYY-MM-DD HH:MM:SS[.nnn]”

Range(datetimenano) -- a range of datetime with begin and end data

 Format: “YYYY-MM-DD HH:MM:SS.[nnnnnnnnn]”

Range(date) -- a range of date with begin and end data

 Format: “YYYY-MM-DD”, example “2018-09-12”

Range(time) -- a range of time with begin and end

 Format: “HH:MM:SS”, example “13:21:01”

Range(double) -- a range of double numbers with begin and end

Range(longdouble) -- a range of longdouble numbers with begin and end

Range(float) -- a range of float numbers with begin and end

Range(bigint) -- a range of bigint numbers with begin and end

Range(int) -- a range of integer numbers with begin and end

Range(medint) -- a range of medint numbers with begin and end

Range(smallint) -- a range of smallint numbers with begin and end

Range(tinyint) -- a range of tinyint numbers with begin and end

38. ZUID

COLUMN zuid -- COLUMN will be a string field with a 32-byte string that uniquely

identifies the record in the store. The value of the UUID column must not be provided

by the user in the insert statement since it will be generated automatically by the

system during the insert operation. If the “key” keyword is not provided, the system

87

automatically provides the default “zid zuid” leading column as the primary key for

database records.

 Examples:

Insert into a values (123, range(‘2010-01-01 00:00:00’, ‘2020-12-31 23:59:59’));

Insert into b values (123, range(‘2010-01-01’, ‘2020-12-31’));

Insert into c values (123, range(‘00:00:00’, ‘13:00:00’));

Insert into d values (‘abc’, range(100, 500));

Insert into e values (‘abc’, range(2.34, 100.918));

Select * from e where within(r, range(10, 500));

Select a, b, r:begin, r:end from e where r:begin >= 300 and r:end <= 1000;

Functions within(), contain(), cover(), converedby(), intersect(), disjoint() are supported for

the range data types.

Default Values

Any column in a store can take a one-byte default value. The timestamp and datetime

columns can have default value of CURRENT_TIMESTAMP. Also upon update of a row, its

timestamp column can be automatically updated by entering “ON UPDATE

CURRENT_TIMESTAMP” . For example:

Create store tab123 (

Key: zid zuid,

Value:

 a int default ‘0’,

 b char(16) default ‘b’,

 bitv bit default b’1’,

 bitm bit default b’0’,

 tm1 timestamp DEFAULT CURRENT_TIMESTAMP,

 tm2 timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP ,

88

 tm3 timestamp ON UPDATE CURRENT_TIMESTAMP ,

 speed enum (‘low’, ‘med’, ‘high’) default ‘med’

);

Data Type Mapping Between Jaguar and Java

The following store specifies the mapping between Jaguar data types and Java data types:

Jaguar Type Format Java Type

bool bool boolean

char char(length) java.lang.String

char char(length) byte[]

int int int

smallint smallint int

tinyint tinyint int

mediumint mediumint int

bigint bigint long

double double(m,n) double

float float(m,n) float

timestamp timestamp (in milliseconds) java.util.Date

datetime datetime (in milleseconds) java.util.Date

datetimenano datatimenano (in microseconds) Java.sql.Timestamp

time time SimpleDateFormat

timenano timenano SimpleDateFormat

zuid zuid java.lang.String

vector

Jaguar Functions

Jaguar supports a number of built-in functions, which can be operated on one or multiple

columns from select statements or join statements. The following description illustrates how

to use Jaguar functions.

Syntax:

 SELECT FUNC(EXPR(COL)) from store [WHERE] [LIMIT];

89

 EXPR(COL):

 Numeric columns: columns with arithmetic operation

 + addition

 - subtraction)

 * multiplication)

 / division

 % modulo

 ^ power (exponential)

 String columns: Concatenation of columns or string constants

 string column + string column

 string column + string constant

 string constant + string column

 string constant + string constant

 string constant: 'some string'

 FUNC(EXPR(COL)):

similarity(COL, ‘<VECTOR>’, ‘KEY_STR>’) -- find top K similar items

vector(COL, ‘KEY_STR’) -- find the vector coordinates for record(s)

 min(EXPR(COL)) -- minimum value of column expression

 max(EXPR(COL)) -- maximum value of column expression

 avg(EXPR(COL)) -- average value of column expression

 sum(EXPR(COL)) -- sum of column expression

 count(1) -- count number of rows

 stddev(EXPR(COL)) -- standard deviation of column expression

 first(EXPR(COL)) -- first value of column expression

 last(EXPR(COL)) -- last value of column expression

 abs(EXPR(COL)) -- absolute value of column expression

 acos(EXPR(COL)) -- arc cosine function of column expression

 asin(EXPR(COL)) -- arc sine function of column expression

90

 ceil(EXPR(COL)) -- smallest integral value not less than column expression

 cos(EXPR(COL)) -- cosine value of column expression

 cot(EXPR(COL)) -- inverse of tangent value of column expression

 floor(EXPR(COL)) -- largest integral value not greater than column expression

 log2(EXPR(COL)) -- base-2 logarithmic function of column expression

 log10(EXPR(COL)) -- base-10 logarithmic function of column expression

 log(EXPR(COL)) -- natural logarithmic function of column expression

 ln(EXPR(COL)) -- natural logarithmic function of column expression

 mod(EXPR(COL), EXPR(COL)) -- modulo value of first over second column expression

 pow(EXPR(COL), EXPR(COL)) -- power function of first to second column expression

 radians(EXPR(COL)) -- convert degrees to radian

 degrees(EXPR(COL)) -- convert radians to degrees

 sin(EXPR(COL)) -- sine function of column expression

 sqrt(EXPR(COL)) -- square root function of column expression

 tan(EXPR(COL)) -- tangent function of column expression

 substr(EXPR(COL), start, length) -- sub string of column expression

 substr(EXPR(COL), start, length, ‘UTF8’) -- sub string of UTF8 encoded string

 substring(EXPR(COL), start, length) same as substr() above

 diff(EXPR(COL), EXPR(COL)) Levenshtein distance (edit distance) between two strings

 diff(COL, ‘stringconstant’) Levenshtein distance (edit distance) between two strings

 upper(EXPR(COL)) -- upper case string of column expression

 lower(EXPR(COL)) -- lower case string of column expression

 ltrim(EXPR(COL)) -- remove leading white spaces of string column expression

 rtrim(EXPR(COL)) -- remove trailing white spaces of string column expression

 trim(EXPR(COL)) -- remove leading and trailing white spaces of string column

 length(EXPR(COL)) -- length of string column expression

 second(TIMECOL) -- value of second in a datetime column

 minute(TIMECOL) -- value of minute in a datetime column

91

 hour(TIMECOL) -- value of hour in a datetime column

 date(TIMECOL) -- value of date in a datetime column

 month(TIMECOL) -- value of month in a datetime column

 year(TIMECOL) -- value of year in a datetime column

 datediff(type, BEGIN_TIMECOL, END_TIMECOL) -- difference of two datetime columns

 type: second (difference in seconds)

 type: minute (difference in minutes)

 type: hour (difference in hours)

 type: day (difference in days)

 type: month (difference in months)

 type: year (difference in years)

 The result is the END_TIMECOL – BEGIN_TIMECOL.

 dayofmonth(TIMECOL) -- the day of the month in a datetime column (1-31)

 dayofweek(TIMECOL) -- the day of the week in a datetime column (0-6)

 dayofyear(TIMECOL) -- day of the year in a datetime column (1-366)

 curdate() -- current date (yyyy-mm-dd) in client’s local time

 curtime() -- current time (hh:mm:ss) in client’s local time

now() -- current date and time (yyyy-dd-dd hh:mm:ss) in client’s local time

uuidtime(ZUIDCOL) -- time string of a ZUID column with precision of microseconds.

Example:

 select similarity(v, '0.1,0.2,0.3’, ‘topk=5,type=cosine_fraction_short’)

from tvec;

 select vector(vc, ‘type=cosine_fraction_short') from tvec where

zid=’1234’;

 select sum(amt) as amt_sum from sales limit 3;

 select cos(lat), sin(lon) from map limit 3;

 select tan(lat+sin(lon)) as t, cot(lat^2+lon^2) as c from map;

 select uid, uid+addr, length(uid+addr) from user limit 3;

 select price/2.0 + 1.25 as newp, lead*1.25 - 0.3 as newd from plan;

92

 select curdate() cd, curtime() ct, now() nw from _SYS_;

 select dayofweek("2021-09-29 03:03:12") v;

The _SYS_ is a special store that has only one column with only one character. It is used to

query system related data such as current time and date on the server, which are not related to

any other store structures. If a select query does not point to a store name, the client side will

run the locally and returns the result to the user, without consulting the server. As shown in

the last example of the above set of examples, the client will just compute the day of week

from a constant string and return the day number to the user.

Jaguar SQL Statements

The commands and SQL statements supported by JaguarDB can be shown by the help

command in the interactive shell jql program:

jaguar:test> help;

You can enter the following commands (ending with semicolon):

help admin (how to for admin account)

help use (how to use databases)

help desc (how to describe stores)

help show (how to show stores)

help create (how to create stores)

help insert (how to insert data)

help load (how to load data from client host)

help copy (how to copy data from server host)

help select (how to select data)

help update (how to update data)

help delete (how to delete data)

help drop (how to drop a store completely)

help alter (how to alter a store and rename a key column)

93

help truncate (how to truncate a store)

help func (how to call functions in select)

help spool (how to write output data to a file)

Please note that in a query command, keywords (such as create, store, select, where) can only

be separated by blank spaces, ‘\t’, ‘\r’, ‘\n’ characters. Other non-printable characters are not

allowed and may cause parsing errors when executing the query.

Admin commands

These commands should be executed by the “admin” account to manage user accounts and

databases.

create tenant TENANANT; -- create a new tenant or business unit

createdb DBNAME;

dropdb DBNAME;

makeapikey; -- The command will create a valid API key string

createuser <APIKEY> <EMAIL> <LEVEL> <TENANT> -- APIKEY is the string created

from the above makeapikey command; EMAIL is the email address of a new user;

LEVEL is the plan or type of account for the user; TENANT is the name of a

tenant or business unit. If the tenant does not exist, it will be created.

dropuser apikey;

showusers;

Example:

createdb mydb;

dropdb mydb;

makeapikey;

createuser testapikey me@emailcom 3000 tenant1;

dropuser testapikey;

94

Grant command

After admin has created a user account, permissions of the user should be granted by the

admin. The grant command can be used in the following manner:

jaguar:test> help grant;

jaguar> grant all on all to user;

jaguar> grant PERM1, PERM2, ... PERM on DB.TAB.COL to user;

jaguar> grant PERM on DB.TAB.* to user;

jaguar> grant PERM on DB.TAB to user;

jaguar> grant PERM on DB to user;

jaguar> grant PERM on all to user;

jaguar> grant select on DB.TAB.COL to user [where TAB.COL1 > NNN and TAB.COL2 < MMM;

Only the admin account can issue this command.

PERM is one of: all/create/insert/select/update/delete/alter/truncate

All means all permissions.

The where statement, if provided, will be used to filter rows in select and join.

Example:

jaguar> grant all on all to user123;

jaguar> grant all on mydb.tab123 to user123;

jaguar> grant select on mydb.tab123.* to user123;

jaguar> grant select on mydb.tab123.col2 to user3 where tab123.col4>100;

jaguar> grant delete, update on mydb.tab123.col4 to user1;

Revoke command

Permissions of a user can be revoked with the following commands:

jaguar:test> help revoke;

95

jaguar> revoke al on all from user;

jaguar> revoke PERM1, PERM2, ... PERM on DB.TAB.COL from user;

jaguar> revoke PERM on DB.TAB.* from user;

jaguar> revoke PERM on DB.TAB from user;

jaguar> revoke PERM on DB from user;

jaguar> revoke PERM on all from user;

Only the admin account can issue this command.

PERM is one of: all/create/insert/select/update/delete/alter/truncate

All means all permissions. The permission to be revoked must exist already.

Example:

jaguar> revoke all on all from user123;

jaguar> revoke all on mydb.tab123 from user123;

jaguar> revoke select on mydb.tab123.* from user123;

jaguar> revoke select, update on mydb.tab123.col2 from user3;

jaguar> revoke update, delete on mydb.tab123.col4 from user1;

Describe command

Describe a store or index:

 desc store;

 desc INDEX;

Example:

 desc usertab;

96

 desc db.store.addr_index;

Show command

Show information about database system:

show databases (display all databases in the system)

show stores (display all stores in current database)

show indexes (display all indexes in current database)

show currentdb (display current database being used)

show task (display all active tasks)

show indexes from/in store (display all indexes of a store in currently

selected database)

show server version (display Jaguar server version)

show client version (display Jaguar client version)

show user (display username of current session)

show cluster (display clusters and nodes in each cluster)

Example:

 show databases;

 show stores;

 show indexes from mystore;

 show indexes;

 show task;

Create command

Commands for creating store and index:

create store store3 (key: KEY TYPE(size), ..., value: VALUE

TYPE(size), ...);

create store store4 (COL1 TYPE(size), COL2 TYPE(srid:ID,metrics:M), ...);

97

create index INDEXNAEME on store(COL1, COL2, ...[, value: COL,COL]);

create index INDEXNAEME on store(key: COL1, COL2, ...[, value: COL,COL]);

Example:

 create store photos (key: zid zuid, value: vector v(1024, ‘<SPECS>’)

 fname char(128),);

 create store user (key: name char(32),

 value: age int, address char(128), rdate date);

 create store sales (key: name char(32), stime datetime,

 value: author char(32));

 create store sales (key asc: id bigint, stime datetime,

 value: member char(32));

 create store users (name char(32), age int, address char(128));

 create index addr_index on user(address);

 create index addr_index on user(address, value: zipcode);

 create index addr_index on user(key: address, value: zipcode, city);

 create store media (key: uid int, value: audio file, video file);

 create store ls(key: id int, value: s linestring(srid:4326,metrics:5));

 create store cirm (key: a int, value: c circle(metrics:2), d int);

 create store if mmetrics (key: a int, value: pt point(srid:4326,

metrics:3), b int);

In creating store, if there is no key specified, an ZUID column is automatically added

as a unique key to the store with the name “zid”. If the ZUID column is the key, then

no other columns can be a key.

When creating an index, you can add several value columns which will not be used as

a key column in the index. It is purely for easy data access without going to the main

store for retrieving the value columns. Creating an index from a store which has data

already may take some time to complete, but it will be faster than the initial time

spent on inserting the store data.

98

If the column type is geometric or geologic, the default value of SRID is zero. Metrics

specifies the number of metrics associated with each point of raster shape or with a

vector shape. There can be multiple metrics corresponding to each location point in a

raster geometry.

In the command to create a vector store to store vectors and related data:

create store photos (key: zid zuid, value: vector v(1024, ‘<KEYDEFS>’)

 fname char(128));

The field ‘zid’ would store the auto-generated ZeroMove ZUID for each record. The

column ‘v’ will be a vector field storing an auto-generated numeric ID for the vector.

The number 1024 means the dimension of the vectors will be 1024. The string

<KEYDEFS> is one or more key strings, each specifying the distance type, input value

type, and storage quantization type.

For example:

create store photos (

 key: zid zuid,

 value: vector v(1024, ‘cosine_fraction_short,euclidean_fraction_byte’)

 fname char(128));

The above command instructs that the database will be creating a vector store for

cosine similarity search, with data input type of fractional numbers, storage

quantization type of 16-bit integer. In addition, a vector store is also created for

Euclidean distance type, fractional input values, and quantization type of 8-bit integer.

In later searches of similarity, users can query top K nearest neighbors of a query

vector by cosine or Euclidean distance measures.

Insert SQL Commands

99

insert into store (col1, col2, col3, ...) values ('va1', 'val2',

intval, ...);

insert into store values (k1, k2, 'va1', 'val2', intval, ...);

insert into TAB1 select TAB2.col1, TAB2.col2, ... from TAB2 [WHERE] [LIMIT];

insert into TAB1 (TAB1.col1, TAB1.col2, ...) select TAB2.col1, TAB2.col2, ...

from TAB2 [WHERE] [LIMIT];

Example:

 insert into photos values (‘0.1, 0.2, 0.3, -0.1’, ‘photo1.jpg’);

 insert into user (fname, lname, age) values ('David', 'Doe', 30);

 insert into user (fname, lname, age, addr) values ('Larry', 'Lee', 40,

'123 North Ave., CA');

 insert into member (name, datecol) values ('LarryK', '2015-03-21');

 insert into member (name, timecol) values ('DennyC', '2015-12-23

12:32:30.022012 +08:30');

 insert into t1 select * from t2 where t2.key1=1000;

insert into t1 (t1.k1, t1.k2, t1.c2) select t2.k1, t2.c2, t2.c4 from t2

where t2.k1=1000;

insert into media values (100, ‘/tmp/myaudio.aud’, ‘/tmp/muvideo.mov’);

insert into mmetrics values (110, point(0.2 0.3 'A' 'B' 'C'), 234);

insert into mmetrics values (220, point(0.2 0.3 '10' '00' '30'), 43);

insert into cirm values (100, circle(22 33 100 'PARK' 'tower'), 209);

insert into cirm values (200, circle(24 31 100 'SCHL' 'bank'), 258);

For the column that is a vector, the single quotes can be used to quote the vector

components. More than one vector columns can be added in a store, allowing for

multiple types embedding or feature vectors to be stored for a data item. Metrics data

must be enclosed with single quotes or double quotes. The number of metrics data

must be less than or equal to the number of metrics defined when creating the store

with the columns that have metrics fields. Each metric is a string that has a length less

than or equal to 8 characters or numbers. Metrics normally are used as tags or

attributes describing a location or a shape. During store creation, the number of

metrics can be as large as desired.

100

If there is a column of type “zuid”, then its value must not be listed in the insert

command. The database server will automatically generate a unique string (32 bytes)

for the column and insert the whole record into database.

For datetime, datetimenano, timestamp fields, if no time zone information is provided,

the input is considered from the client’s local time zone.

Load command

Loading data in a file into database:

load /path/input.txt into store [columns terminated by C] [lines terminated

by N] [quote terminated by Q];

(Instructions inside [] are optional. /path/input.txt is located on client

host.)

Default values:

 columns terminated by: ','

 lines terminated by: '\n'

 column values can be quoted by singe quote (') character.

Example:

 load /tmp/input.txt into user columns terminated by ',';

The above load command can load a CSV file into the database.

Select SQL command

Data can be selected in various ways from the database:

SELECT similarity(VECCOL, ‘QUERY_VEC’,

‘topk=K,type=SPEC,with_score=yes’) from TAB;

SELECT vector(VECCOL, ‘type=SPEC’) from TAB WHERE …;

(SELECT) from store [WHERE] [GROUP BY] [ORDER BY] [LIMIT] [TIMEOUT N];

(SELECT) from INDEX [WHERE] [GROUP BY] [ORDER BY] [LIMIT] [TIMEOUT N];

101

select * from store;

select * from store limit N;

select * from store limit S,N;

select COL1, COL2, ... from store;

select COL1, COL2, ... from store limit N;

select COL1, COL2, ... from store limit N;

select COL1, COL2, ... from store where KEY='...' or KEY='...' and (...) ;

select COL1, COL2, ... from store where (. . .) or (... and ...);

select COL1, COL2, ... from store where KEY='abc' and KEY2 like ‘abc%’;

select COL1, COL2, ... from store where KEY='abc' and KEY2 like ‘abc*’;

select * from store where KEY='abc' and KEY2 match ‘abc.*z’;

select COL1, COL2, ... from store where KEY=’key88’ and VAL1 between m and n;

select COL1 as col1label, COL2 col2label, ... from store;

select count(*) from store;

select min(COL1), avg(COL3) as avg3, sum(COL4) sum4, count(1) from store;

select FUNC(COL1) fc1, FUNC(COL2) as x from store timeout 100;

If no limit is provided, a default of 10000 records is displayed on screen. Timeout

parameter is optional and specifies the number of seconds for the server to timeout for

the select operation. If no timeout is provided, server processing will timeout in 60

seconds for the select operation. Please be warned that in certain select operations, it

will take a long time if your dataset is large. It is prudent to first try a timeout and

check how long a query can take.

The match operation takes a regular expression enclosed with two single quotes. If the

selected column matches the regular expression, then the test evaluates to true.

Examples:

SELECT similarity(v, ‘0.1,0.2,0.4’,‘topk=10,type=euclidean_fraction_byte’)

 from tvec;

select vector(v, 'type=cosine_fraction_short') from tvec where zid='1232323’;

select * from user;

102

select * from user limit 100;

select * from user limit 1000,100;

select fname, lname, address from user;

select fname, lname, address, age from user limit 10;

select fname, lname, address from user where fname='Sam' and lname='Walter';

select * from user where fname='Sam' and lname='Walter';

select * from user where fname='Sam' or (fname='Ted' and lname like 'Ben%');

select * from user where fname >= 'Sam';

select * from user where fname >= 'Sam' and fname < 'Zack';

select * from user where fname >= 'Sam' and fname < 'Zack' and (zipcode =

94506 or zipcode = 94507);

select * from user where fname >= 'Sam' and zipcode in (94506, 94582);

select * from t1_index where uid='frank380' or uid='davidz';

select * from sales where stime between '2014-12-01 00:00:00 -08:00' and

'2014-12-31 23:59:59 -08:00';

select avg(amt) as amt_avg from sales;

select sum(amt) amt_sum from sales where ...;

select sum(amt) amt_sum from sales group by key1, key2 limit 10;

select sum(amt+fee) as amt_sum from sales timeout 300;

select * from metrics1;

select a, pt:x, pt:y, pt:m1, pt:m2, pt:m3 from mmetrics;

select * from cirm;

select c:x, c:y, c:m1, c:m2 from cirm;

The c:m1 and c:m2 are the values of the metrics associated with the column that has metrics.

Getfile command

If there are some columns that are of type ‘file’, you can download the file data and

save it into a local file on the client host. The syntax is:

 Getfile COL into localfilapath from store where key=…;

103

Where localfilepath is file on client’s computer and please make sure the “where”

condition must specify the unique row that contains the file.

 Getfile COL into stdout from store where key=…;

Where the stdout is a system keyword and represents the Linux standard output

stream. The get file command does not save the file data into a file. However it

streams the file data into the standard output stream which might be useful for

playing media files into browsers.

You can also download multiple files from server into files on client side.

 Getfile COL1 into fpath2, COL2 into fpath2 from store where key=…;

You can get the file size, file time, md5sum of files in a store:

 Getfile col1 size, col2 time, col2 md5 from t123 where …;

 Output is: col1.size:[38393] col2.time:[…] col2.md5:[IEdjJDDKKDnxnE]

To get the file type of a file, use the following command:

 Getfile col1 type from t123 where …;

To get the hostname where a file is stored, use the following command:

 Getfile col1 host from t123 where …;

To get the full path of a file, use the following command:

 Getfile col1 fpath from t123 where …;

To get the host and full path of a file, use the following command:

 Getfile col1 hostfpath from t123 where …;

104

To get the size of a file in MB (megabytes), use the following command:

 Getfile col1 sizemb from t123 where …;

To get the size of a file in GB (gigabytes), use the following command:

 Getfile col1 sizegb from t123 where …;

In getting the file attributes only, the “where condition” need not to be unique. The

where clause can be constructed to include multiple rows which may contain one or

more file columns. The attributes of the files in each row will be reported back to the

client.

Managing files in JaguarDB is important for building data-lakes for AI. A data lake for

AI refers to a scalable repository that stores a vast volume of raw, structured, semi-

structured, and unstructured data in its native format. This approach allows

organizations to accumulate a wide array of data types, including text, images, videos,

logs, time series, and more. The data lake concept is particularly beneficial for AI

applications due to its flexibility, scalability, and potential to facilitate advanced

analytics and machine learning.

When retrieving or downloading the data of a file, the where clause must be a unique

query condition, specifying the only one record that satisfies the where clause. You can

download multiple files on the same record, but not multiple files from multiple

records.

Update SQL Command

Update store set VCOL:vector=’VID:VECTOR_STR’;

Update store set VCOL:vector=’VECTOR_STR’ where …;

update store set VALUE='...', VALUE='...', ... where KEY1='...' and

KEY2='...', ... ;

update store set VALUE='...', VALUE='...', ... where KEY1>='...' and

KEY2>='...', ...;

update store set KEY='...', VALUE='...', ... where KEY='...' and

VALUE='...', ...;

105

Example:

update tvec set v:vector=’11223344:0.1,0.2,0.3,0.4’ where 1;

update tvec set v:vector=’0.1,0.2,0.3,0.4’ where zuid=’ZMdjjrjrII8u@00’;

update user set address='200 Main St., SR, CA 94506' where fname='Sam' and

lname='Walter';

update user set fname='Tim', address='201 Main St., SR, CA 94506' where

fname='Sam' and lname='Walter';

Delete SQL Command

delete from store;

delete from store where KEY='...' and KEY='...' and ... ;

delete from store where KEY>='...' and KEY<='...' and ... ;

Example:

 delete from tvec where fid=’JDjruf3394JJ@00’;

 delete from junkstore;

 delete from user where fname='Sam' and lname='Walter';

Drop command

stores or indexes can be dropped with the drop command:

drop store [if exists|force] store;

drop index INDEX on store;

Example:

 drop store user;

 drop index user_idx1 on user;

106

Truncate command

Data in a store can be deleted with the truncate command (schema is left untouched):

 truncate store store;

Data in store will be deleted, but the store schema still exists.

Example:

 truncate store mystore;

Alter command

The name of a key column can be changed to a different name:

alter store store rename OLDKEY to NEWKEY;

This command renames a key name in store store.

Example:

 alter store mystore rename mykey1 to userid;

Spool command

Send the output of a command to a file on client host:

spool LOCALFILE;

spool off;

Example:

 spool /tmp/myout.txt;

 (The above command will make the output data to be written to file

107

 /tmp/myout.txt)

 spool off;

 (The above command will stop writing output data to any file)

Group By Statement

Aggregation operation can be performed on numerical columns of a store or index with group

by clause. The elements in the group by columns can be any column or columns. If they are

all the keys or the left-subset of keys in the store or index, no sorting operation is performed

so it would be faster than non-key group by.

If a non-numerical column is selected in the select clause without the “lastvalue”, the value of

any record is used and displayed.

Select [aggregation(COL)] from store/INDEX group by c1, c2, c3, … order by …

limit …;

Group By LastValue Statement

The last records of certain groups in a store or index can be selected with “group by lastvalue”

statement.

Select [COL1, COL2, …] from store/INDEX group by lastvalue k1, k2, k3;

As a result of the above statement, the records are grouped according to the keys k1, k2, and

k3, and the very last record of each such group is displayed.

Order By Statement

From the select results (which may contain group by statement), data can be further ordered

by one or more columns:

 order by COL1, COL2, COL3 [ASC/DESC]…

108

The default sorting order is ASC (meaning ascending). Descending order can be represented

by DESC. The ordered columns have to be either all in ASC or all in DESC. Mixed ordering

(one column in ASC but another column in DESC) is not supported. When DESC appears in an

order by and a limit condition is used, the system actually returns the last greater [LIMIT]

records.

Aggregation Statement

Aggregation functions can be applied to one more columns in a store or index in combination

with other aggregation functions.

Examples include:

 Select sum(col1 + col2) + 2* avg(col3) from tab123 where …;

 select sum(x_coord + y_coord) as ss, 2*avg(minute1) as min2 from t123;

 select sum(x_coord + y_coord) as ss, 2*stddev(minute1) as std2 from t123;

System Limits

Limits of store Columns

A store can have a maximum of 4096 columns.

Limits of Vector Columns in a store

A store can have a maximum of 4096 vector columns.

Limits on Length of a Database Name

The name of a database can have a maximum of 64 characters.

109

Limits on Length of a Column Name

The name of a column can have a maximum of 32 characters.

Limits on Number of Bytes of a Row

Each record or row in a store can have a maximum of 2 billion bytes.

Schema Change

Use spare_ Column

When a store is created, a spare_ column with 30% extra space is allocated (which can be configurable

in server.conf file). Users can add more columns to a store, using the extra spare_ column. If the spare_

column still has space, then the following command can be used to add a new column:

alter store store add COLUMN TYPE;

 Example: alter store tab123 add spacex char(4);

store Change

When the schema of a store does need a major change (in early stage recommended), the

following procedures are recommended:

1) Execute the jagexport command to export the store data

2) Drop the store

3) Re-create the store with new columns by following these rules:

a) Some new columns can be added

b) Some old columns can be dropped

c) Smaller size columns can be changed to bigger size columns (int->bigint, wider char)

d) Remaining column names should be kept the same

4) Execute the jagimport command

110

5) After SUCCESSFUL import, run the jag client program to cleanup the exported data:

$ jag -u admin -p -d DB -h :8888

 jaguar> import into DB.store complete;

Fault Tolerance

In an operational Jaguar cluster, one or more Jaguar nodes can go offline but the cluster will

still function. Data records are replicated to nodes that are alive. When the down-node is up

again, data is restored from the live nodes. Keep in mind that you should always have one or

more spare servers ready to be commissioned. The spare servers should be installed with the

same version of Jaguar software and its $JAGUAR_HOME/data directory is empty. If one

Jaguar node is completely broken (such as damaged hard drive, etc.), the spare server should

be configured with the same IP address as the broken server and conf/cluster.conf file is

updated. Then the spare server can just be connected to the Jaguar cluster network. Data will

flow from other live nodes into this new server and everything will work normally. If a Jaguar

server is temporarily disconnected from the rest of the nodes in the cluster, nothing needs to

be done. When the network connection comes back up, data will be automatically restored to

the node.

Expanding Jaguar Cluster

As data sizes continue to grow, the need to expand a Jaguar cluster arises, whether to

accommodate more data or enhance overall cluster performance. Expanding or scaling out a

Jaguar cluster is a straightforward process that involves just a few simple steps. Unlike other

distributed databases that necessitate the time-consuming migration of data from old servers to

new ones, which can take hours or even days, Jaguar's scaling process is instant and demands

no data migration among servers. Throughout the scaling process, the Jaguar cluster operates

seamlessly, ensuring uninterrupted functionality before and after the expansion.

Here are the three simple steps to expand your current cluster:

1. Set up your new cluster like when you setup your existing cluster. The file

conf/cluster.conf contains only the IP addresses of the hosts in the new cluster. (one IP

address per line). Start all Jaguar servers of the new cluster.

2. Copy conf/cluster.conf in the new cluster to one of the hosts in the old cluster and

name it as conf/newcluster.conf.

111

3. On the host which has the conf/newcluster.conf file, connect to Jaguar cluster with

admin account and in exclusive mode:

$JAGUAR_HOME/bin/jag -u admin -p -x yes -h 127.0.0.1:8888

jaguar> addcluster;

After the command “addcluster” is executed, the new server hosts are accepted by the current

cluster and will start to take read and write requests. When needed in the future, each new

cluster of servers can be added with the same method.

The following example demonstrates how you can add a new cluster of hosts:

Suppose you have 192.168.1.10, 192.168.1.11, 192.168.1.12, 192.168.1.13 on your current cluster.

You want to add a new cluster with new hosts: 192.168.1.14, 192.168.1.15, 192.168.1.16,

192.168.1.17 to the system. The following steps demonstrate the process to add the new cluster

into the system:

 Step 1. Provision the new hosts 192.168.1.14, 192.168.1.15, 192.168.1.16, 192.168.1.17 and

install jaguardb on these hosts (cluster.conf can be empty)

 Step 2. The new cluster is a blank cluster, with no database schema and store data

 Step 3. Admin user should log in (or ssh) to a host in EXISTING cluster, e.g., 192.168.1.10

 Step 4. On host 192.168.1.10, prepare the newcluster.conf file, with the IP addresses of the

hosts on each line separately:

 In $JAGUAR_HOME/conf/newcluster.conf file:

 192.168.1.14

 192.168.1.15

 192.168.1.16

 192.168.1.17

 Step 5. Connect to local jaguardb server from the host that contains the newcluster.conf file

 $JAGUAR_HOME/bin/jag -u adminapikey -h 192.168.1.10:8888 -x yes

 Step 6. While connected to the jaguardb, execute the addcluster command:

 jaguardb> addcluster;

112

 The addcluster will take approximately one second to finish. All the new hosts are instantly

added to current system which will function normally.

 Note:

 1. Never directly add new hosts in the file $JAGUAR_HOME/conf/cluster.conf

manually

 2. Any plan to add a new cluster of hosts must implement the addcluster process

described here.

 3. Execute addcluster command in the existing cluster, NOT in the new cluster.

 4. It is recommended that existing clusters and new cluster contain large number of

hosts. (dozens or hundreds).

 For example, the existing cluster can have 30 hosts, and the new cluster can have 100

hosts.

 5. Make sure JaguarDB is installed on all the hosts of the new cluster, and connectivity

is good among all the hosts.

 6. The server and client software must have the same version, on all the hosts of both

existing clusters and the new cluster.

 7. After adding a new cluster, all hosts will have the same cluster.conf file.

 8. Make sure REPLICATION factor is the same on all the hosts.

During the operation of adding more clusters to the system, any client that is already

connected to the system need not to disconnect and reconnect to the server it is currently

connected to. The client can continue performing database operations as usual.

Jaguar Database Security

User data is considered extremely important in Jaguar database. Several measures can be

taken to protect user data in Jaguar database system.

Network Protection

113

In the network or subnet where Jaguar is in operation, firewall or Security Policy can be setup

for protecting the system against malicious attempts. In an on-premise environment, router

firewall can be configured to allow only Jaguar database traffic. In a cloud environment,

security policy can be configured to allow only Jaguar data communication. Even a database

firewall can be employed to allow only legitimate SQL commands to be passed through, thus

any threats such as SQL-injection or other attacks can be prevented.

Server System Protection

SELinux is a hardened Linux kernel that provides strong system security to Linux systems.

With SELinux installed and enabled, user permission, process control, file control are better

managed to achieve higher-level security.

User Privilege and File Permission

All files and data in Jaguar are owned by only one user (jaguar). Other users do not have the

permission to read and write data in Jaguar database. The authorized user has password in the

Linux system and we strongly recommend a strong-security password for the user. The

credentials should be securely saved and protected. File permission should be strictly enforced

and maintained across Jaguar database servers.

Database User Authentication

User accounts in Jaguar database are also required to have a password that is minimum of 16

characters long. Any shorter passwords are rejected by the system. The username and

password should be kept properly by all users and developers of the system and they should be

frequently updated with string-security content.

User Level Control

Users of Jaguar are classified into two categories: 1) administrator; 2) regular user. Only the

administrator has the privilege to create and delete databases, regular user accounts. The

regular users can only create and drop stores, indexes, insert and modify data records.

114

Server Communication Control

In a cluster of Jaguar database servers, messages between servers are frequently passed and

processed. The servers use tokens (SERVER_TOKEN) to identify and authorized themselves to

obtain permission to send request to other servers. The tokens are created during initial

database installation process and are unique among Jaguar customers. This ensures the

integrity of a Jaguar database cluster.

Access Control List

There are whitelist (conf/whitelist.conf) and blacklist (conf/blacklist.conf) control files that are

used to limit client access to Jaguar servers. Only the clients whose IP address or IP segment is

included in the whitelist are authorized to connect to Jaguar servers. For certain IP addresses

in the whitelist, access can be denied if they belong to a blacklist. If no whitelist and blacklist

are provided, then all client access is granted. We strongly recommend that the access control

lists be used in Jaguar cluster for maximum system security.

Log Monitoring

Jaguar servers generate log entries for client connection and store management. Database

administrator is recommended to regularly monitor the log information, and check for illegal

access to the database or database store modifications.

Data Import and Synchronization

In Jaguar github web site there are programs to import and synchronize data between other

databases and Jaguar database. There are also example programs on how to import data and

synch data from Oracle, MySQL and other databases. The mechanism to synchronize data is: 1)

Jaguar database must create same store as in other databases; 2) Other databases create

changelog and triggers to capture changes in an original store or stores; 3) import all data

from other databases to Jaguar; 4) start java sync server on a Jaguar server to monitor the

records in the changelog stores and update the Jaguar stores.

115

Step One: Create stores on Jaguar

Suppose you have some stores on another database, you must first create the corresponding

stores on Jaguar. This must be performed on a Jaguar host.

Example: Use github.com/datajaguar/jaguardb: importsync/databaseimport/from_oracle/

create_jaguar_store.sh to create stores on Jaguar from any Jaguar host. In example1 directory

you can use create_jaguar_store_example1.sh as a reference. Note: please make sure you first

compile the JDBC programs: cd importsync/jdbc; ./compile.sh

Step Two: Create Changelog Triggers

On other database system you must create changelog and triggers for the stores. This step

must be performed on the other database system.

Please go to github and the following program to create changelog and triggers:

importsync/databasesync/oracle/OracleToJaguar/oracle_create_changelog_trigger.sh

Result：The changelog for store234 is created. If store234 has any insert, update, or delete, a

new record in changelog is added.

Step Three: Importing Data

Importing data from other database to Jaguar database. This step must be executed on a

Jaguar server.

Please goto github and find this program：

importsync/databaseimport/from_oracle/example1/ import_from_oracle.sh

Please note that in appconf.oracle you need to have correct source_jdbcurl , dest_jdbcurl, and

other parameters.

Step Four: Updating Jaguar stores

116

On a Jaguar host, a java sync server needs to be started to monitor the changelog stores on the

other database system. This step must be performed on Jaguar host.

Please use the following example program in jaguar github:

importsync/databasesync/oracle/OracleToJaguar/example1/start_sync_oracle_to_jaguar.sh

You need to change appconf.oracle to suite your own environment.

appconf.oracle:

source_jdbcurl=jdbc:oracle:thin:@//192.168.7.120:1522/test

（192.18.7.120 is IP address of Oracle server）

source_store=store234|store345 (separate stores with vertical line)

source_user=test

source_password=test

sleep_in_millis=3000 （scan changelog store every 3 seconds）

keep_rows=10000 (keeping some records in changelog）

dest_jdbcurl=jdbc:jaguar://localhost:8888/test （port of jaguar server）

dest_user=test

dest_password=test

set true to stop java server anytime when java is running

stop=true

print more debug info

debug=true

If you are just importing data from other database to Jaguar, then you need to execute only

step one (creating jaguar store) and step three (importing data to jaguar). The java sync server

can be stopped any time and restarted without affecting the synchronization. However, for real-

time updates, it is recommended that the sync server be running all the time and a smaller

sleep interval is desired.

117

Spark Data Analysis

Since Jaguar provides JDBC connectivity, developers can use Apache Spark to load data from

Jaguar and perform data analytics and machine learning. The advantages provided by Jaguar

is that Spark can load data faster, especially for loading data satisfying complex conditions,

from Jaguar than from other data sources. The following code is based on two stores that

have the following structure:

create store int10k (key: uid int(16), score float(16.3), value: city char(32));

create store int10k_2 (key: uid int(16), score float(16.3), value: city char(32));

Scala program:

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import scala.collection._

import org.apache.spark.sql._

import org.apache.spark.sql.types._

import org.apache.log4j.Logger

import org.apache.log4j.Level

import com.jaguar.jdbc.internal.jaguar._

import com.jaguar.jdbc.JaguarDataSource

object TestScalaJDBC {

 def main(args: Array[String]) {

 sparkfunc()

 }

 def sparkfunc()

118

 {

 Class.forName("com.jaguar.jdbc.JaguarDriver");

 val sparkConf = new SparkConf().setAppName("TestScalaJDBC")

 val sc = new SparkContext(sparkConf)

 val sqlContext = new org.apache.spark.sql.SQLContext(sc)

 import sqlContext.implicits._

 Logger.getLogger("org").setLevel(Level.OFF)

 Logger.getLogger("akka").setLevel(Level.OFF)

 val people = sqlContext.read.format("jdbc")

 .options(

 Map("url" -> "jdbc:jaguar://127.0.0.1:8888/test",

 "dbstore" -> "int10k",

 "user" -> "test",

 "password" -> "test",

 "partitionColumn" -> "uid",

 "lowerBound" -> "2",

 "upperBound" -> "2000000",

 "numPartitions" -> "4",

 "driver" -> "com.jaguar.jdbc.JaguarDriver"

)).load()

 // work fine

 people.registerTempstore("int10k")

 people.printSchema()

 val people2 = sqlContext.read.format("jdbc")

119

 .options(

 Map("url" -> "jdbc:jaguar://127.0.0.1:8888/test",

 "dbstore" -> "int10k_2",

 "user" -> "test",

 "password" -> "test",

 "partitionColumn" -> "uid",

 "lowerBound" -> "2",

 "upperBound" -> "2000000",

 "numPartitions" -> "4",

 "driver" -> "com.jaguar.jdbc.JaguarDriver"

)).load()

 people2.registerTempstore("int10k_2")

 // sort by columns

 people.sort("score").show()

 people.sort($"score".desc).show()

 people.sort($"score".desc, $"uid".asc).show()

 people.orderBy($"score".desc, $"uid".asc).show()

 // select by expression

 people.selectExpr("score", "uid").show()

 people.selectExpr("score", "uid as keyone").show()

 people.selectExpr("score", "uid as keyone", "abs(score)").show()

 // select a few columns

 val uid2 = people.select("uid", "score")

 uid2.show();

120

 // filter rows

 val below60 = people.filter(people("uid") > 20990397).show()

 // group by

 people.groupBy("city").count().show()

 // groupby and average

 people.groupBy("city").avg().show()

 people.groupBy(people("city"))

 .agg(

 Map(

 "score" -> "avg",

 "uid" -> "max"

)

)

 .show();

 // rollup

 people.rollup("city").avg().show()

 people.rollup($"city")

 .agg(

 Map(

 "uid" -> "avg",

 "score" -> "max"

)

)

121

 .show();

 // cube

 people.cube($"city").avg().show()

 people.cube($"city")

 .agg(

 Map(

 "uid" -> "avg",

 "score" -> "max"

)

)

 .show();

 // describe statistics

 people.describe("uid", "score").show()

 // find frequent items

 people.stat.freqItems(Seq("uid")).show()

 // join two stores

 people.join(people2, "uid").show()

 people.join(people2, "score").show()

 people.join(people2).where (people("uid") === people2("uid")).show()

 people.join(people2).where (people("city") === people2("city")).show()

 people.join(people2).where (people("uid") === people2("uid") and people("city") ===

people2("city")).show()

 people.join(people2).where (people("uid") === people2("uid") && people("city") ===

people2("city")).show()

122

 people.join(people2).where (people("uid") === people2("uid") && people("city") ===

people2("city")) .limit(3).show()

 // union

 people.unionAll(people2).show()

 // intersection

 people.intersect(people2).show()

 // exception

 people.except(people2).show()

 // Take samples

 people.sample(true, 0.1, 100).show()

 // distinct

 people.distinct.show()

 // same as distinct

 people.dropDuplicates().show()

 // cache and persist

 people.dropDuplicates.cache.show()

 people.dropDuplicates.persist.show()

 // SQL dataframe

 val df = sqlContext.sql("SELECT * FROM int10k where uid < 200000000 and city between

'Alameda' and 'Berkeley' ")

 df.distinct.show()

123

 The class generated from the above Scala program can be submitted to Spark as follows:

/bin/spark-submit --class TestScalaJDBC \

 --master spark://masterhost:7077 \

 --driver-class-path /path/to/your/jaguar-jdbc-2.0.jar \

--driver-library-path $JAGUAR_HOME/lib \

 --conf spark.executor.extraClassPath=/path/to/your/jaguar-jdbc-2.0.jar \

 --conf spark.executor.extraLibraryPath=$JAGUAR_HOME/lib \

 /path/to/your_project/target/scala-2.10/testjdbc_2.10-1.0.jar

SparkR with Jaguar

Once you have R and SparkR packages installed, you can start the SparkR program by

executing the following command:

 #!/bin/bash

export JAVA_HOME=/home/jvm/jdk1.8.0_60
LIBPATH=/usr/lib/R/site-library/rJava/libs:$JAGUAR_HOME/lib
LDLIBPATH=$LIBPATH:$JAVA_HOME/jre/lib/amd64:$JAVA_HOME/jre/lib/amd64/server
JDBCJAR=$JAGUAR_HOME/lib/jaguar-jdbc-2.0.jar

sparkR \
–driver-class-path $JDBCJAR \
–driver-library-path $LDLIBPATH \
–conf spark.executor.extraClassPath=$JDBCJAR \
–conf spark.executor.extraLibraryPath=$LDLIBPATH

Then in the SparkR command line prompt, you can execute the following R commands:

library(RJDBC)
library(SparkR)

sc <- sparkR.init(master=”spark://mymaster:7077″, appName=”MyTest”)

124

sqlContext <- sparkRSQL.init(sc)

drv <- JDBC(“com.jaguar.jdbc.JaguarDriver”, “/home/jaguar/jaguar/lib/jaguar-jdbc-
2.0.jar”, “`”)

conn <- dbConnect(drv, “jdbc:jaguar://localhost:8888/test”, “test”)

dbListstores(conn)

df <- dbGetQuery(conn, “select * from int10k where uid > ‘anxnfkjj2329’ limit 5000;”)

head(df)

#correlation

> cor(dfuid,dfscore)

[1] 0.05107418

#build the simple linear regression

> model<-lm(uid~score,data=df)

> model

Call:

lm(formula = uid ~ score, data = df)

Coefficients:

(Intercept) score

2.115e+07 1.025e-03

#get the names of all of the attributes

> attributes(model)

$names

[1] “coefficients” “residuals” “effects” “rank”

[5] “fitted.values” “assign” “qr” “df.residual”

[9] “xlevels” “call” “terms” “model”

125

$class

[1] “lm”

Spatial Data Management

Jaguar supports spatial data in various forms, including vector geometry objects and raster

coordinates. Vector geometry objects include square, rectangle, circle, ellipse, cube, box,

sphere, etc. Raster objects include multipoint, linestring, multilinestring, polygon, and

multipolygon. Spatial data often occurs in autonomous driving and traffic management

systems.

Spatial Data Types

In addition to existing data types in Jaguar, new spatial data types are also supported. In spatial

data management, the reference system and direction of an object or surface are important

factors.

126

127

128

129

130

131

Spatial Data Storage

Creating store Containing Spatial Data

In creating store containing spatial data types, the type of a column can have a spatial

reference identifier (SRID). If no SRID is provided, the default value is zero, meaning it is a

simple geometric coordinate system. In addition to the SRID of the column, the number of

metrics associated with location point or a shape can be specified with the “metrics:” keyword.

The following examples show how to create stores with spatial columns.

create store if not exists geom (key: a int, value: pt point(srid:4326), b int);

create store if not exists geom2 (key: a int, value: pt point(srid:wgs84), b int);

create store if not exists geom3 (key: a int, value: pt point, b int);

create store dot (key: a int, pt1 point, b int, pt2 point, value: c int, d int, pt3 point3d);

create store cb (key: a int, q1 cube, b int, q2 cube, value: c int, q3 cube);

create store es (key: a int, c ellipsoid, value: d int, e ellipse);

create store linestr (key: lsw linestring(srid:wgs84), a int, value: lss linestring);

create store pol (key: a int, value: po2 polygon, po3 polygon3d, tm datetime, ls linestring);

create store mline (key: a int, value: m multilinestring, m3 multilinestring3d);

create store mpg (key: a int, value: p multipolygon, p3 multipolygon3d);

create store street (key: a int, value: pt linestring(srid:wgs84,metrics:10), b int);

create store base (key: a int, value: pt point(srid:wgs84,metrics:20), char(32));

The number of metrics is unlimited, as long as the storage space allows. Each metric has a length of 8

bytes, with default value of zero. The metrics are identified by mN, such as:

 select col:m1, col:m3 from mytab where a=100 and col:x=200 and col:y=300;

Inserting Spatial Data

Spatial data can be inserted into a store as any other data types. GeoJson formatted data is also

accepted by Jaguar. GeoJson format begins with “json” type identifier. The following examples show

how to insert spatial data into stores.

132

insert into geom values (1, point(23.2222 52.39393), 123);

insert into geom2 values (1, point(22 33), 123, point(99 221));

insert into geom2 values (10, json({"type":"Point", "coordinates": [2,3]}), 123);

insert into geom3 (b, pt2, pt1, a) values (2, point(25 33), point(23 451), 153);

 insert into d6 (pt2, a, b, pt1) values (json({"type":"Point", "coordinates": [124,351]}), 209, 13, point(92 19));

insert into sph1 (s1, b, a, s2) values (sphere(2 3 4 123), 921, 234, sphere(99 22 33 20000));

insert into rect1 (c, a, r1) values (22, 31, rectangle(29 13 48 19));

insert into cyn values (1, cylinder(1 2 3 45 88 0.3), 1239);

insert into cn values (1, cone(1 2 3 45 88), 1239, cone(33 22 44 44 99 0.4 0.3));

insert into eps values (1, ellipse(1 2 45 88), 1239, ellipse(22 44 44 99));

insert into tri values (triangle3d(11 33 88 99 23 43 9 8 2), 123);

insert into linestr values (2, linestring(11.13 2,2.9 33 , 33 44, 5.5 6.6, 55 66, 77 88), 210, linestring(3.3 4.4, 5.5 6.6, 8.9 9));

insert into pol values (1, polygon((0 0, 20 0, 88 99, 0 0)));

insert into mp values (125, multipoint(1 2 , 3 4, 2 1), json({"type":"MultiPoint", "coordinates": [[1,2,3],[3,4,5]] });

insert into mline values(1, multilinestring((0 0,2 0,8 9,0 0),(1 2,2 3,1 2)),multilinestring3d((1 1 1,2 2 2,3 3 3),(2 2 2,3 3 1)));

It should be noted that a polygon can have an outer “ring” and several internal “rings” or

holes inside the outer ring. The start and end points of a ring must be the same to form a

closed shape. A multipolygon just contain multiple polygons where each polygon can have

one or more rings. An example of polygon is:

 polygon((0 0,2 0,8 9, 23 32, 0 0), (1 2,2 3, 4 5, 1 2), (12 32, 33 44, 50 60, 12 32))

An example of 3D multipolygon is:

 multipolygon3d(((1 1 1,2 2 2,3 3 3, 1 1 1), (2 2 2,3 3 1, 3 5 6, 2 2 2)), ((1 2, 20 30, 30 40, 1 2), (0 0, 1 2, 2 3, 0 0)));

Metric data should be placed following the coordinates and geometric data of a shape. For example,

Insert into t values (square(0 0 100 0.2 m1 m2 m3 …));

Insert into ms values (linestring(0 0 m1 m2 m3, 3 4 m1 m2 m3, 4 6 m1 m2 m3));

Insert into ms values (triangle(0 0, 3 4, 4 6, m1 m2 m3));

133

Loading Spatial Data

You can prepare a csv-like file containing spatial data and load the file into a store.

An example of such file is (input.csv):

1,”john doe”, point(1 2), 421, linestring(11 22, 33 44, 55 66)

2,”john doe”, point(2 2), 321, linestring(101 202, 303 494, 550 676), 876

3,”sam”, point(3 2), 351, linestring(151 282, 33 454, 505 666)

4,”dave”, point(4 2), 39, linestring(171 252, 33 424, 575 696)

Then you can execute the following command to load the data into a store:

 $JAGUAR_HOME/bin/jagimportcsv -d DB -t TAB -f input.csv

Spatial Data Query

Coordinate

The x, y, z coordinates of a spatial column can be used for data query. For example:

 select * from points where a > 100 and pt:x between 0.3 and 122 and pt:y between 300 and 400;

Within

134

The “within” function checks if a shape is strictly within another shape. For example:

select * from poly where nm like ‘east%’ and within(po, square(0 0 10000));

select * from poly3d where within(po, cube(0 0 0 10000));

select * from sq where within(s, polygon((0 0, 1 1, 2 2, 0 0)));

select * from sq where within(s, rectangle(0 0 20 30));

NearBy

Checks if a shape is near to a location by a distance.

select * from sq1 where nearby(s1, point(0 0), 2000);

The following store lists the shapes that can be calculated for the nearby relation.

135

Intersect

 select * from sq1 where intersect(s1, square(0 0 200));

 select * from rect where intersect(r, rectangle(0 0 200 100));

 select * from lstr where intersect(s, rectangle(0 0 200 100));

 select * from lstr where intersect(s, circle(0 0 200));

 select * from lstr where intersect(s, ellipse(0 0 200 100));

CoveredBy

CoveredBy function is similar to “Within” except that some boundary can overlap between two

shapes.

Cover

Cover is the opposite of CoveredBy function.

Contain

The “contain” function checks if a shape strictly contains another shape. It is the opposite of

the “Within” function between two shapes.

Disjoint

select * from sq1 where disjoint(s1, rectangle(0 0 200 300));

Disjoint is the opposite of “Intersect” function.

136

Distance

The distance function computes the distance between two shapes.

If the SRID of the shapes are WGS84, then the distance computed is in meters between

two shapes described with (longitude, latitude). The X coordinate is the longitude, and Y the

latitude. The following store lists the shapes that can be calculated for the distance() function.

Shapes for Location Relation

137

The following stores list the shapes that can be used to query the location relation among

them. Most shapes can be used to query within, contain, cover, coveredby, intersect, disjoint

functions.

138

139

140

141

142

143

144

145

146

147

148

Area

The area of 2D shapes and surface area of 3D can be computed with the area() function, which

is valid for the following geometric or geographic shapes:

• Circle

• Circle3D

• Square

• Square3D

• Rectangle

• Rectangle3D

• Triangle

• Triangle3D

• Sphere

• Cube

• Cylinder

• Cone

• Ellipse

• Ellipsoid

• Polygon

• MultiPolygon

For example:

 jaguar:mydb> select area(sq3) from geotab where key1 < 100;

 jaguar:mydb> select col1, area(circle(1 1 10)) as b from geotab;

149

GeoJson

GeoJson is a format to represent shapes using JSON data string. If a GeoJson string is desired

from a query result, then the “all” function can be used. The all() function returns all the data

of a complex geometric shape in GeoJson format. For example,

 select all(s) from lstr where intersect(s, circle(0 0 200));

 select all(s) from lstr where a=100;

The complex shapes include linestring, multilinestring, polygon, multipolygon and their 3D

counterparts. In the client programming API, there are methods to get the all data points of a

complex shape: getAll(), getAllByName(), getAllByIndex(). Please refer to the file JagaurAPI.h

in $JAGUAR_HOME/include/ directory for detailed information.

Dimension

dimension(col) -- get dimension as integer of a shape column. It returns 2 for 2D shapes, and

3 for 3D shapes, and 0 for non-geometric columns. For example:

jaguar:test> select dimension(mp) as dim from mpolygon;

jaguar:test> dim:[2]

GeoType

geotype(col) -- get type as string of a shape column. For example:

jaguar:test> select geotype(mp) as tp from mpolygon;

jaguar:test> tp:[MultiPolygon]

PointN

pointn(col,n) -- get n-th point (1-based) of a shape column. It returns in format: [x y] for 2D

shapes and [x y z] for 3D shapes. For example:

150

 jaguar:test> select pointn(pt, 3) as p3 from mpoints;

 jaguar:test> p3:[10.2 32.7]

Extent

extent(col) -- get bounding box of a shape column.

For 2D shapes, it returns [xmin ymin xmax ymax]

For 3D shapes, it returns [xmin ymin zmin xmax ymax zmax]

 jaguar:test> select extent(pd) as bbx from mpoints;

 jaguar:test> bbx:[0 0 33.2 49.8]

StartPoint

startpoint(col) -- get the start point of a line string column.

For 2D shapes, it returns [x y]. For 3D shapes, it returns [x y z].

 jaguar:test> select startpoint(pd) as st from mpoints;

 jaguar:test> st:[203.2 178.5]

EndPoint

endpoint(col) -- get the end point of a line string column.

For 2D shapes, it returns [x y]. For 3D shapes, it returns [x y z].

 jaguar:test> select endpoint(pd) as end from mpoints;

 jaguar:test> end:[903.4 778.6]

IsClosed

isclosed(col) -- check if raster points of a line string column is closed. (0 or 1)

 jaguar:test> select isclosed(linecol) as ic from mpoints;

 jaguar:test> ic:[0]

151

Number of Points

numpoints(col) -- get total number of points of a line string or polygon

 jaguar:test> select * from mpoints where numpoints(pcol) < 100;

Number of Rings

numrings(col) -- get total number of rings of a polygon or multipolygon. A polygon contains

an outer-ring, and also may contain 0 or more inner-rings (holes).

 jaguar:test> select a, numrings(p) r from mpoints;

 jaguar:test> a:[123] r:[3]

Number of Lines

numlines(col) -- get total number of linestrings of a multilinestring, polygon or multipolygon.

 jaguar:test> select a, numlines(p) r from mlstrs;

 jaguar:test> a:[123] r:[3]

SRID

srid(col) -- get SRID of a shape column.

Summary

summary(col) -- get a text summary of a shape column. For example:

 jaguar:test> select summary(p) sum from mpoints;

sum=[geotype:Polygon srid:0 dimension:2 numpoints:9 numrings:2 isclosed:1]

Minimum and Maximum Points

152

 xmin(col) -- get the minimum x-coordinate of a shape with raster data

 ymin(col) -- get the minimum y-coordinate of a shape with raster data

 zmin(col) -- get the minimum z-coordinate of a shape with raster data

 xmax(col) -- get the maximum x-coordinate of a shape with raster data

 ymax(col) -- get the maximum y-coordinate of a shape with raster data

 zmax(col) -- get the maximum z-coordinate of a shape with raster data

For example:

 jaguar:test> select xmin(p) xm from mpoints;

 jaguar:test> xm=[30.4 332.3 939.9]

ConvexHull

 Convexhull(geom) -- get the convex hull as polygon of a shape with raster data

For example:

 jaguar:test> select convexhull(mline) from multlines;

 jaguar:test> select numpoints(convexhull(lstr)) from linestr;

Centroid

 centroid(geom) -- get the centroid coordinates of a vector or raster shape

For example:

 jaguar:test> select centroid(mline) from multilines;

Volume

volume(geom) -- get the volume of a 3D shape

Closestpoint

closestpoint(point(x y), geom) -- get the closest point on geom from point(x y)

153

Angle

angle(line(x y), geom) -- get the angle in degrees between two lines

Buffer

buffer(geom, 'STRATEGY') -- get polygon buffer of a shape.

The STRATEGY is:

Parameter Value Option
distance Symmetric or asymmetric RADIUS: length

join Round or miter Number of points

end Round or flat

point Circle or square Number of points

‘distance=symmetric/asymmetric:RADIUS,join=round/miter:N,end=round/fla

t,point=circle/square:N’

Length

length(geom) -- get length of line, line3d, linestring, linestring3d, multilinestring,

multilinestring3d.

Perimeter

perimeter(geom) -- get perimeter length of a closed shape (vector or raster)

Equal

equal(geom1,geom2) -- check if shape geom1 is exactly the same as shape geom2

IsSimple

154

issimple(geom) -- check if shape geom has no self-intersecting or tangent points

IsValid

isvalid(geom) -- check if multipoint, linestring, polygon, multilinestring, multipolygon is

valid

IsRing

isring(geom) -- check if linestring is a ring

IsPolygonCCW

ispolygonccw(geom) -- check if the outer ring is counter-clock-wise, inner rings clock-

wise

IsPolygonCW

ispolygoncw(geom) -- check if the outer ring is clock-wise, inner rings counter-clock-

wise

OuterRing

outerring(polygon) -- the outer ring as linestring of a polygon

OuterRings

outerrings(mpolygon) -- the outer rings as multilinestring of a multipolygon

InnerRings

innerrings(polygon) -- the inner rings as multilinestring of a polygon or multipolygon

155

RingN

ringn(polygon,n) -- the n-th ring as linestring of a polygon. n is 1-based

InnerRingN

innerringn(polygon,n) -- the n-th inner ring as linestring of a polygon. n is 1-based

PolygonN

polygonn(multipgon,n) -- the n-th polygon of a multipolygon. n is 1-based

Unique

unique(geom) -- geom with consecutive duplicate points removed

Union

union(geom1,geom2) -- union of two geoms. Polygon outer ring should be counter-clock-

wise.

Collect

collect(geom1,geom2) -- collection of two geometric shapes.

ToPolygon

topolygon(geom) -- converting square, rectangle, circle, ellipse, triangle to polygon

Text

156

text(geom) -- text string of a geometry shape

Difference

difference(geom1,geom2) -- geom1 minus the common part of geom1 and geom2

SymDifference

symdifference(geom1,geom2) -- geom1+geom2 minus the common part of geom1 and

geom2 (symmetric difference)

IsConvex

isconvex(pgon) -- check if the outer ring of a polygon is convex

Interpolate

interpolate(lstr,frac) -- the point on linestring lstr where line length from beginning

to the point is equal to frac, which is between 0 and 1.

For example: select interpolate(lstr, 0.5) from mylines;

LineSubstring

linesubstring(lstr,startfrac,endfrac) – the substring of linestring lstr where the

substring starts at startfrac and ends at endfrac. 0.0 <= starfrac <= endfrac <= 1.0.

LocatePoint

locatepoint(lstr,point) – fraction of length where a point on linestring is closest to a

given point.

For example: select locatepoint(lstr, point(100 200)) from mylines;

157

AddPoint

addpoint(lstr,point) – add a point at the end of a linestring.

addpoint(lstr,point,position) – add a point at the position of a linestring. Position is

1-based.

For example:

select addpoint(lstr3, point3d(100 200 300)) from mylines3d;

SetPoint

setpoint(lstr,point,position) – set or replace a point at the position of a linestring.

Position is 1-based.

For example:

 select setpoint(lstr3, point3d(100 200 300), 3) from mylines3d;

RemovePoint

removepoint(lstr,position) – remove a point at the position of a linestring. Position is

1-based.

For example:

 select numpoints(removepoint(lstr3, 3)) from mylines3d;

Reverse

reverse(geom) – reverse the order of points in line, linestring, polygon, and multipolygon.

For example:

select reverse(lstr) from mylines3d;

158

Scale

scale(geom,facor) – scale the coordinates of geom by a factor.

scale(geom,xfactor,yfactor) – scale the x-y coordinates of 2D geom by two factors.

scale(geom,xfactor,yfactor,zfactor) – scale a 3D geom by three factors.

For example: select scale(ls, 0.5, 0.8) from mylines;

ScaleAt

scaleat(geom,point,fac) – scale the coordinates of geom by a factor relative to a point.

scaleat(geom,point,xfac,yfac) – scale 2D geom by two factors relative to a point.

scaleat(geom,point,xfac,yfac,zfac) – scale a 3D geom by three factors from a

point.

For example:

select scaleat(ls, point(100 100), 0.5, 0.8) from mylines;

ScaleSize

scalesize(geom,fac) – scale the size of vector geom by a factor relative to self-center.

scalesize(geom,xfac,yfac) – scale 2D vector geom by two factors relative to self-

center

scalesize(geom,xfac,yfac,zfac) – scale a 3D vector geom by three factors.

For example:

select scalesize(s2, 0.5, 0.8) from mysquare;

Translate

translate(geom,dx,dy) – translate the position of 2D geom by dx in X and dy in Y axis.

159

translate(geom,dx,dy,dz) – translate the position of 3D geom by dx, dy, and dz.

For example:

 select translate(s2, 0.5, 0.8) from mysquare;

TransScale

transscale(geom,dx,dy,fac) – translate 2D geom by dx and dy and then scale it by fac.

transscale(geom,dx,dy,xfac,yfac) – translate geom and then scale it by xfac and

yfac.

transscale(geom,dx,dy,dz,xfac,yfac,zfac) – translate 3D geom and scale.

For example:

 select transscale(s2, 100, 200, 2.0, 3.0) from mysquare;

Rotate

rotate(geom,N) – rotate 2D geom by N degrees counter-clock-wise around point(0 0).

rotate(geom,N, ‘degree’) – rotate 2D geom by N degrees counter-clock-wise.

rotate(geom,N, ‘radian’) – rotate 2D geom by N radians counter-clock-wise.

For example:

 select rotate(s, 90, ‘degree’) from mysquare;

RotateSelf

rotateself(geom,N) – rotate 2D geom by N degrees counter-clock-wise around self-center.

rotateself(geom,N, ‘degree’) – rotate 2D geom by N degrees counter-clock-wise.

rotateself(geom,N, ‘radian’) – rotate 2D geom by N radians counter-clock-wise.

160

For example:

 select rotateself(s, 90, ‘degree’) from mysquare;

RotateAt

rotateat(geom,N, ‘degree’,x,y) – rotate 2D geom by N degrees around point(x y)

rotateat(geom,N, ‘radian’,x,y) – rotate 2D geom by N radians around point(x y)

For example:

 select rotateat(s, 90, ‘degree’, 200, 300) from mysquare;

Affine

affine(geom,a,b,d,e,dx,dy) – apply affine transformation of 2D geom.

affine(geom,a,b,c,d,e,f,g,h,i,dx,dy) – apply affine transformation of 3D geom.

In affine transformation:

2D:

 newx = a*x + b*y + dx
newy = d*x + e*y + dy

3D:

 newx = a*x + b*y + c*z + dx
 newy = d*x + e*y + f*z + dy
 newz = g*x + h*y + i*z + dz

For example:

 select affine(ls, 10, 20, 30, 40, 100, 200) from mylines;

Voronoi Polygons

voronoipolygons(mpoint) -- find Voronoi polygons from multipoints

161

voronoipolygons(mpoint,tolerance) -- find Voronoi polygons from multipoints with tolerance

voronoipolygons(mpoint,tolerance,bbox) -- find Voronoi polygons from multipoints with

tolerance and bounding box. Default bounding box is 30% larger than the bounding box of all

the points.

For example:

select voronoipolygons(p, 10, bbox(-100, -100, 200, 200)) as vor

from mypoints;

select numpolygons(voronoipolygons(p, 10, bbox(-100, -100, 200,

200))) as np from mypoints;

Voronoi Lines

voronoilines(mpoint) -- find Voronoi linestrings from multipoints

voronoilines(mpoint,tolerance) -- find Voronoi linestrings from multipoints with tolerance

voronoilines(mpoint,tolerance,bbox) -- find Voronoi linestrings from multipoints with tolerance

and bounding box. Default bounding box is 30% larger than the bounding box of all the

points.

For example:

select voronoilines(p, 10, bbox(-100, -100, 200, 200)) as vor

from mypoints;

Delaunay Triangles

delaunaytriangles(mpoint) -- find Delaunay triangles from multipoints

delaunaytriangles(mpoint,tolerance) -- find Delaunay triangles from multipoints with a tolerance

For example:

select delaunaytriangles(p) as dt from mypoints;

GeoJson

162

geojson(geom) -- GeoJSON string of geom

geojson(geom,N) -- GeoJSON string of geom, receiving maximum of N points (default 3000).

geojson(geom,N,n) -- GeoJSON string of geom, receiving maximum of N points, n sample

points on 2D vector shapes.

For example:

select geojson(p) as js from mypolygons;

select geojson(p,1000) as js from mypolygons;

ToMultipoint

tomultipoint(geom) -- converting geom to multipoint

tomultipoint(geom,N) -- converting geom to multipoint. N is number of points sent to client

For example:

select tomultipoint(p) as mt from mypolygons;

WKT (Well Known Text)

wkt(geom) -- display geom as WKT (Well Known Text) string

For example:

select wkt(p) from mypolygons;

MinimumBoundingCircle

minimumboundingcircle(geom) -- minimum bounding circle of 2D geom

For example:

select minimumboundingcircle(p) from mypoints;

163

MinimumBoundingSphere

minimumboundingsphere(geom) -- minimum bounding sphere of 3D geom

For example:

select minimumboundingsphere(p) from mypoints;

IsOnLeft

isonleft(geom1,geom2) -- detects if geom1 is on the left of geom2, for linear shapes only.

For example:

select isonleft(point, linestr) from mylines;

IsOnRight

isonright(geom1,geom2) -- detects if geom1 is on the right of geom2, for linear shapes

For example:

select isonright(lstr, linestr) from mylines;

LeftRatio

leftratio(geom1,geom2) -- ratio of geom1 on the left of geom2, for linear shapes

For example:

select leftratio(point, linestr) from mylines;

164

RightRatio

rightratio(geom1,geom2) -- ratio of geom1 on the right of geom2, for linear shapes

For example:

select rightratio(point, linestr) from mylines;

KNN (K Nearest Neighbor)

knn(geom, point, K) -- K nearest neighbors on geom to point

knn(geom, point, K,min,max) -- K nearest neighbors on geom to point between distance min and max

For example:

select knn(linestr, point(30 40)) from mylines;

select knn(linestr3d, point3d(30 40 50), 10, 100) from mylines3d;

MetricN

metricn(geom) -- all metrics of vector shape geom (m1#m2#m3#...)

metricn(geom,N) -- metrics of N-th point of raster shapes. For vector shapes, the N-th metric.

metricn(geom,N,m) -- metric of N-th point, m-th metric for raster shapes.

For example:

select metricn(mysquare) from squares;

select metricn(mysquare, 3) from squares;

select metricn(lstr, 3, 1) from linestrings;

Spatial Index

165

Indexes can be built and maintained for spatial data like other types of data. For example,

create index linestr3d1_idx1 on linestr3d1(b, ls2);

Data on the index can be selected using where clauses as regular store.

166

Time Series Data Management

JaguarDB Time Series

Normally time series is a series of data points indexed in time order. Time series data plays a

crucial role in a wide range of AI applications due to its sequential and temporal nature. Time

series data consists of observations collected over successive time intervals, such as daily stock

prices, hourly sensor readings, monthly temperature records, and more. Leveraging time series

data can provide valuable insights and enable various AI-driven applications. In JaguarDB, the

time series has a different meaning: it is both a sequence of data points and a series of tick

stores holding aggregated data values at specified time spans. For example, a time series store

in JaguarDB can have a base store storing data points in time order, and tick stores such as 5-

minute, 15-minute, hourly, daily, weekly, monthly stores to store aggregated data within these

time spans.

When a time series store is created, the tick stores are created automatically. The tick stores

are used to quickly query aggregated data without doing lengthy computations. As a result,

queries for aggregated values in different time periods is extremely fast.

Creating Time Series stores

The following formats describe commands to create a time series store:

 create store timeseries(TICK:RETENTION, TICK:RETENTION, …|BASERENTION)

BASEstore (key: KEYCOL1, KEYCOL2, …, value: col rollup VTYPE, …);

167

Where:

TICK:RETENTION specifies a tick type and retention period of the tick store;

BASERENTION represents the retention period of the base store;

BASEstore is the name of the base store;

KEYCOL1, KEYCOL2, … are the key columns in the base store;

Rollup specifies the columns whose values will be rolled up to the tick stores;

VTYPE is the type of the column to be rolled up.

The TICK keyword starts with a number and a period type. For example, 15s means a tick

store of 15 seconds; 30m means a tick store of 30 minutes.

The letter ‘s’ indicates TICKs in seconds.

The letter ‘m’ indicates TICKs in minutes.

The letter ‘h’ indicates TICKs in hours.

The letter ‘d’ indicates TICKs in days.

The letter ‘w’ indicates TICKs in weeks.

The letter ‘M’ indicates TICKs in months.

The letter ‘M’ indicates TICKs in months.

The letter ‘q’ indicates TICKs in quarters.

The letter ‘y’ indicates TICKs in years.

The letter ‘D’ indicates TICKs in decades.

Valid TICKs in seconds scale include: 1s, 2s, 3s, 5s, 6s, 10s, 12s, 15s, 20s, 30s.

Valid TICKs in minutes include: 1m, 2m, 3m, 5m, 6m, 10m, 12m, 15m, 20m, 30m.

Valid TICKs in hours include: 1h, 2h, 3h, 4h, 6h, 8h, 12h.

Valid TICKs in days include: 1d, 2d, 3d, 4d, 5d, 6d, 7d, 10d, 15d.

Valid TICKs in weeks include: 1w, 2w, 3w, 4w.

Valid TICKs in months include: 1M, 2M, 3M, 4M, 6M.

168

Valid TICKs in quarters include: 1q, 2q.

Valid TICKs in years can be any number of years.

Valid TICKs in decades can be any number of decades.

Multiple TICKs are allowed in the same TICK group. For example, you can have 5m and 15m

stores, and 1d and 10d tick stores.

The format for the RETENTION is the same as the TICK format, except that it can have any

number of retention periods. The RETENTION specifies how long the data points in the base

store should be kept. Examples of RETENTION are 15d, 1M, 3M, 1y, etc. If no RETENTION is

provided, the data points in the tick store are not deleted. If the retention period is passed, old

data will be deleted from the tick stores.

The BASERETNYTION specifies how long the data points in the base store should persist. Data

points that are older than the retention period are deleted frequently. If no BASERETENTION

is provided, the data points in the base store will not be deleted.

A rollup column in a base store indicates that its value will be rolled to the tick stores. In the

tick stores the last stored value of the rollup column is saved from the base store. In addition,

aggregated values of ‘sum’, ‘min’, ‘max’, ‘avg’, ‘var’ of the column are computed and stored in

the tick stores.

The type ‘sum’ indicates that the rollup column in the base store is aggregated into the tick

store by taking the cumulative value of the column.

The type ‘min’ indicates that the rollup column in the base store is aggregated to the tick store

by taking the minimum value of the column.

The type ‘max’ indicates that the rollup column in the base store is aggregated to the tick store

by taking the maximum value of the column.

The type ‘avg’ indicates that the rollup column in the base store is aggregated to the tick store

by taking the average value of the column.

The type ‘var’ indicates that the rollup column in the base store is aggregated to the tick store

by taking the variance of the column. The variance is the squared value of the standard

deviation.

169

A tick store has the following columns, which are called the heap columns:

col::sum -- represents the total sum of the column ‘col’;

col::min -- represents the minimum value of the column ‘col’;

col::max -- represents the maximum value of the column ‘col’;

col::avg -- represents the average of the column ‘col’;

col::var -- represents variance value of the column ‘col’;

The standard deviation of a column can be obtained by taking the square root of the variance.

All these statistical values are computed automatically during data ingestion for quick data

analysis.

The heap columns hold statistical values of a rollup column. A rollup column is the column

on which the aggregating operations are carried out.

VTYPE is the type of the column to be rolled up. The type can only of numerical types:

tinyint, smallint, int, bigint, float, and double. In the tick stores, the integer types become

bigint type, and the float or double types become double type. String, date, time, location or

other columns cannot be rolled up to the tick stores.

The base store can include columns of any type, whose values are not rolled up to the tick

stores if they are not marked with the keyword ‘rollup’. Only the columns with the rollup

property are rolled up to the tick stores. Without any retention specifications, the create

command looks like this:

create store timeseries(TICK, TICK, …)

BASEstore (key: KEYCOL1, KEYCOL2, …, value: col rollup VTYPE, …);

It is possible to provide or omit the retention for tick stores and base store independently. That

is, one store (base or tick able) may have a retention while others may not have a retention.

BASEstore is the name for the base store. The tick stores will have a name that include the

name of the base store and the TICK type. For example, if the timeseries has 15m and 1d,

then the store name for 15m TICK will be BASEstore@15m; the store name for the 1d TICK

170

will be BASEstore@1d. The tick stores have the key columns and the rollup columns from the

base store. For example, if the base store has a name “traffic”, then the tick stores will have

names “traffic@15m” and “traffic@1d” which all can be queried directly for time series data

analysis.

Examples of Time Series stores

Food Delivery Time Series

The following command will create a base store named “delivery”, and two ticks:

create store timeseries(1M:1y,1y)

delivery (key: ts timestamp, courier char(32), customer char(32),

 value: meals rollup bigint, addr char(128));

The base store “delivery” has no retention, so its records are persisted forever unless explicitly

deleted by the user. One TICK is of monthly (M), having a retention period of one year (y).

Another TICK is of yearly (y) with no retention (kept forever). The column ‘meals’ will be

rolled up to ticks ‘1M’ and ‘1y’, but the column ‘addr’ is not rolled up to the ticks. Key columns

are always rolled up to the tick stores.

Traffic Monitoring Time Series

The following command will create a base store named “traffic”, and five ticks:

create store timeseries(15m:3h,1h:48h,1d:3M,1q|3y)

traffic (key: ts timestamp, line char(32),

 value: volume rollup bigint,

 driver char(32)

);

The base store “traffic” has a retention of 3 years, so its records are persisted for 3 years and

any older records will be deleted. The column ‘volume’ is used to collect the traffic volume

171

since the last observation time. The value of this column will be rolled up to all the tick stores.

One tick ‘15m’ is to aggregate data for every 15 minutes, persisted for a total of 3 hours. Tick

‘1h’ is to aggregate passengers by hourly, with retention of 48 hours. Tick ‘1d’ stores

aggregated data from the base store in a daily schedule, persisting for 3 months. Tick ‘1q’

stores quarterly (3 months) aggregated data, without any retention (meaning persisting

forever).

In the traffic base store, timestamp ‘ts’ is the leading key, line (which can be a bus line, train

line, or any transportation vehicle line number) is the second key. The key columns will all be

rolled up to the tick stores for fast data searching. The column ‘volume’ is also rolled up to the

tick stores as data of interest for time series data analysis. The driver’s name represented by the

column ‘driver’ will not be present in any of the ticks. Except the key columns, columns that

are not marked ‘rollup’ will not be present in any of the ticks. Importantly, only numeric

columns (such as int, bigint, float, double) can be rolled up to the ticks. Non-numeric values

cannot be rolled up to the tick stores, because it does not make sense to aggregate non-

numeric fields.

IoT Sensor Time Series

JaguarDB can manage data generated by IoT (Internet of Things) sensors. To monitor

individual sensors and their captured data, the following time series store structure can be

used:

create store timeseries(5m:1d,1h:48h,1d:3M,1M:20y|5y)

sensorstat (key: sensorID char(16), ts timestamp,

 value: temperature rollup float,

 pressure rollup float,

 windspeed rollup float,

 rpm rollup float,

 fuel rollup float,

 model char(16),

 type char(16)

);

172

The base store “sensorstat” has a retention of 5 years, so its records are persisted for 5 years

and older records will be deleted. The column ‘temperature’ is used to measure the

temperature at the location of the sensor. The value of this column will be rolled up to the

tick stores. The column ‘pressure’ measures the pressure at the location of the sensor. The

value of this column will also be rolled up to the tick stores. The column ‘windspeed’

measures the wind speed at the location of the sensor. The value of this column will also be

rolled up to the tick stores. The column ‘rpm’ is used to measure the revolutions per minute

(RPM) of an engine at the location of the sensor. The value of this column will be rolled up to

the tick stores. The column ‘fuel’ measures fuel consumption at the location of the sensor. The

value of this column will be rolled up to the tick stores. The columns ‘model’ and ‘type’ record

the model and type of the sensor or the device that the sensor is equipped for. The last two

columns, however, are not rolled up to the ticks.

The tick stores will have keys and rollup columns in the base store, and the aggregated heap

columns. For example, the tick store ‘sensorstat@1d’ has the following structure:

store test.sensorstat@1d|3M

(

 key:

 sensorid char(16),

 ts datetimesec,

 value:

 temperature float(36.6),

 temperature::sum double(40.10),

 temperature::min double(40.10),

 temperature::max double(40.10),

 temperature::avg double(40.10),

 temperature::var double(40.10),

 pressure float(36.6),

 pressure::sum double(40.10),

 pressure::min double(40.10),

 pressure::max double(40.10),

173

 pressure::avg double(40.10),

 pressure::var double(40.10),

 windspeed float(36.6),

 windspeed::sum double(40.10),

 windspeed::min double(40.10),

 windspeed::max double(40.10),

 windspeed::avg double(40.10),

 windspeed::var double(40.10),

 rpm float(36.6),

 rpm::sum double(40.10),

 rpm::min double(40.10),

 rpm::max double(40.10),

 rpm::avg double(40.10),

 rpm::var double(40.10),

 fuel float(36.6),

 fuel::sum double(40.10),

 fuel::min double(40.10),

 fuel::max double(40.10),

 fuel::avg double(40.10),

 fuel::var double(40.10),

 counter bigint DEFAULT '1',

 spare_ char(386),

);

In this time series, since the sensorID is the first key, looking up various data associated with a

sensor is very fast. The ticks contain aggregate values in different time windows so that data

analysis in various time windows can be completed very quickly without conducting full scan

of stores nor doing complex computations.

174

Base store and Ticks

In JaguarDB, a base store stores the detailed time series data. A tick (or a tick store) stores

aggregated data from the base store according to the predefined tick length. When a time

series store is created, the associated tick stores are automatically created. When time series

data is written to the base store, the aggregated data is also automatically written to all the tick

stores. User can then directly query the tick stores for data in different time windows.

For example, in the above sensorstat time series store, when this store is created, the

following tick stores are also created:

sensorstat@5m

sensorstat@1h

sensorstat@1d

sensorstat@1M

They can be show in the jag client program:

jaguar:mydb> desc sensorstat;

store timeseries(5m:1d,1h:48h,1d:3M,1M:20y|5y) test.sensorstat

(

175

 key:

 sensorid char(16),

 ts timestamp,

 value:

 temperature rollup float(36.6),

 pressure rollup float(36.6),

 windspeed rollup float(36.6),

 rpm rollup float(36.6),

 fuel rollup float(36.6),

 model char(16),

 type char(16),

 spare_ char(76),

);

jaguar:mydb> desc sensorstat@5m;

store test.sensorstat@5m|1d

(

 key:

 sensorid char(16),

 ts datetimesec,

 value:

 temperature float(36.6),

 temperature::sum double(40.10),

 temperature::min double(40.10),

 temperature::max double(40.10),

 temperature::avg double(40.10),

 temperature::var double(40.10),

 pressure float(36.6),

 pressure::sum double(40.10),

 pressure::min double(40.10),

 pressure::max double(40.10),

 pressure::avg double(40.10),

176

 pressure::var double(40.10),

 windspeed float(36.6),

 windspeed::sum double(40.10),

 windspeed::min double(40.10),

 windspeed::max double(40.10),

 windspeed::avg double(40.10),

 windspeed::var double(40.10),

 rpm float(36.6),

 rpm::sum double(40.10),

 rpm::min double(40.10),

 rpm::max double(40.10),

 rpm::avg double(40.10),

 rpm::var double(40.10),

 fuel float(36.6),

 fuel::sum double(40.10),

 fuel::min double(40.10),

 fuel::max double(40.10),

 fuel::avg double(40.10),

 fuel::var double(40.10),

 counter bigint DEFAULT '1',

 spare_ char(386),

);

store test.sensorstat@1h|48h

(

 key:

 sensorid char(16),

 ts datetimesec,

 value:

 temperature float(36.6),

 temperature::sum double(40.10),

 temperature::min double(40.10),

177

 temperature::max double(40.10),

 temperature::avg double(40.10),

 temperature::var double(40.10),

 pressure float(36.6),

 pressure::sum double(40.10),

 pressure::min double(40.10),

 pressure::max double(40.10),

 pressure::avg double(40.10),

 pressure::var double(40.10),

 windspeed float(36.6),

 windspeed::sum double(40.10),

 windspeed::min double(40.10),

 windspeed::max double(40.10),

 windspeed::avg double(40.10),

 windspeed::var double(40.10),

 rpm float(36.6),

 rpm::sum double(40.10),

 rpm::min double(40.10),

 rpm::max double(40.10),

 rpm::avg double(40.10),

 rpm::var double(40.10),

 fuel float(36.6),

 fuel::sum double(40.10),

 fuel::min double(40.10),

 fuel::max double(40.10),

 fuel::avg double(40.10),

 fuel::var double(40.10),

 counter bigint DEFAULT '1',

 spare_ char(386),

);

178

Jaguar:mydb> desc sensorstat@1M;

store test.sensorstat@1M|20y

(

 key:

 sensorid char(16),

 ts datetimesec,

 value:

 temperature float(36.6),

 temperature::sum double(40.10),

 temperature::min double(40.10),

 temperature::max double(40.10),

 temperature::avg double(40.10),

 temperature::var double(40.10),

 pressure float(36.6),

 pressure::sum double(40.10),

 pressure::min double(40.10),

 pressure::max double(40.10),

 pressure::avg double(40.10),

 pressure::var double(40.10),

 windspeed float(36.6),

 windspeed::sum double(40.10),

 windspeed::min double(40.10),

 windspeed::max double(40.10),

 windspeed::avg double(40.10),

 windspeed::var double(40.10),

 rpm float(36.6),

 rpm::sum double(40.10),

 rpm::min double(40.10),

 rpm::max double(40.10),

 rpm::avg double(40.10),

 rpm::var double(40.10),

 fuel float(36.6),

179

 fuel::sum double(40.10),

 fuel::min double(40.10),

 fuel::max double(40.10),

 fuel::avg double(40.10),

 fuel::var double(40.10),

 counter bigint DEFAULT '1',

 spare_ char(386),

);

The keyword “20y” in “store test.sensorstat@1M|20y” means the retention period for tick

sensorstat@1M is 20 years. The string “test” means the store is created in the “test” database. It

should be noticed that the tick stores contain only the key columns and the rollup columns.

In addition, there is an extra column ‘counter’ added automatically in the tick stores. It tracks

the number of records in a period of time. In a tick store, the datetime or timestamp key

column will not have the detailed date time value. Instead. The data time column will have

values at the start of the tick. For example, in an hour tick store, the date time key column will

not have minutes and seconds. It will have time values that are rounded to hours, e.g. “2022-

10-12 13:00:00”, “2022-08-15 16:00:00”.

Inserting Data into Time Series stores

A user can insert data into the base stores just like any other stores. Data in tick stores will be

automatically prepared and inserted by JaguarDB. The following example shows how to insert

data into the base store:

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone1-sid1', '20.0', '35.5', '30.2', '1300', '1.3', 'AA212', 'DH');

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone1-sid1', '20.5', '35.8', '30.7', '1320', '1.5', 'AA212', 'DH');

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone1-sid2', '21.0', '35.7', '30.8', '1304', '1.2', 'AA213', 'DH');

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone2-sid1', '22.0', '36.4', '30.3', '1404', '2.2', 'AB213', 'DF');

180

Data from different sensors which may be attached to different devices can be stored in the

base store ‘sensorstat’. Here the key column ‘ts’ is omitted and a default client’s local time will

be inserted automatically.

When the base store is populated, the four tick stores are automatically populated:

 sensorstat@5m -- will have data aggregated every 5 minutes

 sensorstat@1h -- will have data aggregated every hour

 sensorstat@1d -– will have data aggregated every day

 sensorstat@1M –- will have data aggregated every month

Reading Data From Time Series stores

Reading From Base store and Tick stores

A user can read data from the base stores as well as the tick stores just like any other stores.

The following example shows how to read data from the base store:

> select sensorid, ts, temperature, pressure, rpm from sensorstat where

sensorid='drone1-sid1';

sensorid=[drone1-sid1] ts=[2021-03-25 03:31:49.801081] temperature=[20.0]

pressure=[35.5] rpm=[1300.0]

> select sensorid, ts, temperature, pressure, rpm from sensorstat where

sensorid='drone1-sid2';

sensorid=[drone1-sid2] ts=[2021-03-25 03:42:41.462460] temperature=[21.0]

pressure=[35.7] rpm=[1304.0]

The following example shows how to read aggregated data from the tick stores:

> select sensorid, ts, temperature::avg, pressure::avg, rpm::max from sensorstat@1d

where sensorid='drone1-sid1';

sensorid=[drone1-sid1] ts=[2021-03-25 01:00:00] temperature::avg=[20.0]

pressure::avg=[35.5] rpm::max=[1300.0]

181

> select sensorid, ts, temperature::avg, pressure::avg, rpm::max from sensorstat@1d

where sensorid='drone1-sid2';

sensorid=[drone1-sid2] ts=[2021-03-25 01:00:00] temperature::avg=[21.0]

pressure::avg=[35.7] rpm::max=[1304.0]

> select sensorid, ts, temperature::avg, pressure::avg, rpm::min, rpm::max from

sensorstat@1d where sensorid='*';

sensorid=[*] ts=[2021-03-25 01:00:00] temperature::avg=[20.875] pressure::avg=[35.85]

rpm::min=[1300.0] rpm::max=[1404.0]

Note that the condition sensorid='*' can be used to select data for all the possible values of the

sensorid column. Only on key columns can a user apply the ‘*’ condition. This predicate is

described below in detail.

Grouping Data In Windows

The window(length, column) function takes a datetime (including time of different

granularities) column and breaks the column into time windows. The length argument

represents the length of time for the windows, and column is a store column name. The

window column must have a time type. The following examples demonstrate how to make

queries based on the time windows.

select pickup_datetime, window(5m, pickup_datetime)

from rides

where date(pickup_datetime)='2021-02-11';

The above query breaks the pickup_datetime into a series of 5 minutes intervals and gets the

start time of the intervals in the day of ‘2021-02-11’. The window() function can appear

anywhere in the query statement but only one is required.

The get aggregated values of numeric columns in a store, the group by clause can be used to

get the aggregated values in each of the time windows:

select pickup_datetime, window(5m, pickup_datetime), avg(total_amount) as

avg_total_amount

from rides

where date(pickup_datetime)='2021-02-11'

group by pickup_datetime;

182

The window function creates time windows of 5 minutes based on the column

‘pickup_datetime’. The average of value of total_amount is taken in the 5 minute windows by

the group by method.

All Key Values in Tick store

JaguarDB precomputes values for the ‘*’ condition of every key column in the tick store. Also,

all combinations of the ‘*’ value of each key column are calculated. For example: If there are

three key columns (named A, B, C for instance), then the following combinations are prepared:

Key A Key B Key C Value Rollup Columns

* B C V1, V2, V3, …

A * C V1, V2, V3, …

A B * V1, V2, V3, …

A * * V1, V2, V3, …

* B * V1, V2, V3, …

* * C V1, V2, V3, …

* * * V1, V2, V3, …

Selection of data can choose all combinations of the key values. For example, the following

select patterns can be applied:

select * from tickstore where A=’*’ and B=’value-of-B’;

select * from tickstore where A=’*’ and B=’value-of-B’ and C=’value-of-C’;

select * from tickstore where A=’value-of-A’ and B=’*’ and C=’value-of-C’;

select * from tickstore where A=’*’ and B=’*’ and C=’value-of-C’;

select * from tickstore where A=’*’ and B=’*’;

select * from tickstore where A=’*’ and B=’*’ and C=’*’;

A condition with value of ‘*’ outputs only a single record, instead of multiple records of all

possible values. The following query:

select * from tickstore where A=’*’ and B=’*’;

183

may outputs records of all possible values of key C. However, the following query:

select * from tickstore where A=’*’ and B=’*’ and C=’*’;

will outputs a single record, if such data exists in the store. The column values are aggregated

in runtime under the key entry of ‘*’ for all possible values of the key column. Queries for

aggregation values are fast because only a single record is read to retrieve the aggregated data

without scanning the stores to get the result.

Indexes of Time Series stores

Automatically managing the aggregation tick stores in JaguarDB is not the end of the story.

JaguarDB also enables a user to create indexes on the timeseries stores for flexible queries,

then JaguarDB will automatically create index records and apply them on the tick stores. The

following paragraphs demonstrate how indexes are created and used. For example, suppose we

have inserted data records into the base store ‘delivery’:

insert into delivery (courier, customer, meals, addr) values ('QDEX', 'JohnDoe',

'3', '110 A Street, CA 90222');

insert into delivery (courier, customer, meals, addr) values ('QDEX', 'JaneDoe',

'5', '110 B Street, CA 90001');

insert into delivery (courier, customer, meals, addr) values ('QSEND', 'MaryAnn',

'3', '100 C Street, CA 92220');

insert into delivery (courier, customer, meals, addr) values ('QSEND', 'PaulD',

'12', '550 Ivy Road, CA 90221');

> select * from delivery;

ts=[2021-03-14 20:51:06.457043] courier=[QDEX] customer=[JohnDoe] meals=[3] addr=[110

A Street, CA 90222]

ts=[2021-03-14 20:51:41.282601] courier=[QDEX] customer=[JaneDoe] meals=[5] addr=[110

B Street, CA 90001]

ts=[2021-03-14 20:52:11.605846] courier=[QSEND] customer=[MaryAnn] meals=[3] addr=[100

C Street, CA 92220]

ts=[2021-03-14 20:52:36.826472] courier=[QSEND] customer=[PaulD] meals=[12] addr=[550

Ivy Road, CA 90221]

184

Then if we read the data from the tick stores, we see column statistics are shown:

> select * from delivery@1M;

ts=[2021-03-01 00:00:00] courier=[*] customer=[*] meals=[12] meals::sum=[23] meals::min=[3]

meals::max=[12] meals::avg=[6] meals::var=[44] counter=[4]

ts=[2021-03-01 00:00:00] courier=[*] customer=[JaneDoe] meals=[5] meals::sum=[5] meals::min=[5]

meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[JohnDoe] meals=[3] meals::sum=[3] meals::min=[3]

meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[MaryAnn] meals=[3] meals::sum=[3] meals::min=[3]

meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[PaulD] meals=[12] meals::sum=[12] meals::min=[12]

meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[*] meals=[5] meals::sum=[8] meals::min=[3]

meals::max=[5] meals::avg=[4] meals::var=[0] counter=[2]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[JaneDoe] meals=[5] meals::sum=[5]

meals::min=[5] meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[JohnDoe] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QSEND] customer=[*] meals=[12] meals::sum=[15] meals::min=[3]

meals::max=[12] meals::avg=[8] meals::var=[0] counter=[2]

ts=[2021-03-01 00:00:00] courier=[QSEND] customer=[MaryAnn] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QSEND] customer=[PaulD] meals=[12] meals::sum=[12]

meals::min=[12] meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

> select * from delivery@1y;

ts=[2021-01-01 00:00:00] courier=[*] customer=[*] meals=[12] meals::sum=[23] meals::min=[3]

meals::max=[12] meals::avg=[6] meals::var=[44] counter=[4]

ts=[2021-01-01 00:00:00] courier=[*] customer=[JaneDoe] meals=[5] meals::sum=[5] meals::min=[5]

meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[JohnDoe] meals=[3] meals::sum=[3] meals::min=[3]

meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[MaryAnn] meals=[3] meals::sum=[3] meals::min=[3]

meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[PaulD] meals=[12] meals::sum=[12] meals::min=[12]

meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[*] meals=[5] meals::sum=[8] meals::min=[3]

meals::max=[5] meals::avg=[4] meals::var=[0] counter=[2]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[JaneDoe] meals=[5] meals::sum=[5]

meals::min=[5] meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[JohnDoe] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QSEND] customer=[*] meals=[12] meals::sum=[15] meals::min=[3]

meals::max=[12] meals::avg=[8] meals::var=[0] counter=[2]

185

ts=[2021-01-01 00:00:00] courier=[QSEND] customer=[MaryAnn] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QSEND] customer=[PaulD] meals=[12] meals::sum=[12]

meals::min=[12] meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

The leading key column is the timestamp in the base and tick stores. If we want to look up

records by courier names, we can create an index using the courier column as the leading

column in the index:

create index delivery_index_courier on delivery(courier, customer, meals);

After the create command, the index for the base store can be directly queried:

> select * from delivery_index_courier;

courier=[QDEX] customer=[JaneDoe] meals=[5] ts=[2021-03-25 22:42:22.164523]

courier=[QDEX] customer=[JohnDoe] meals=[3] ts=[2021-03-25 22:42:22.163801]

courier=[QSEND] customer=[MaryAnn] meals=[3] ts=[2021-03-25 22:42:22.165190]

courier=[QSEND] customer=[PaulD] meals=[12] ts=[2021-03-25 22:42:22.165899]

The above “create index” command creates only an index on the base store, not indexes on the

tick stores. Recall that a timeseries store is a cluster of stores that include the base store and a

series of tick stores. In this case, only one index is created on the basestore. However, if a user

wishes to create a cluster of indexes on the timeseries stores, then the following command can

used to create a cluster of indexes:

 create index delivery_index_courier ticks on delivery(courier, customer, meals);

An index named “delivery_index_courier@1M” is created based on the tick store

“delivery@1M”. Another index named “delivery_index_courier@1y” is created based on the tick

store “delivery@1y”. The indexes for the tick stores, however, do not contain the heap columns

such as meals::min, meals::max. and meals::avg columns, because the index column “meals” is

a key in the index. If the meals column is to be treated as a heap column, then the index can

be created with the following command:

186

create index deliv_index_cour ticks on delivery(key: courier, customer, value: meals);

The above command creates a cluster of indexes that include all the statistical values of the

field “meals”.

If only certain heap columns were to be tracked by indexes, indexes on tick stores can be

created with selected heap columns:

create index delivery_index2_courier on delivery@1M(courier, customer, meals::min,

meals::max, meals::sum);

> select * from delivery_index2_courier;

courier=[*] customer=[*] meals::min=[3] meals::max=[12] meals::sum=[23] ts=[2021-03-01 00:00:00]

courier=[*] customer=[JaneDoe] meals::min=[5] meals::max=[5] meals::sum=[5] ts=[2021-03-01

00:00:00]

courier=[*] customer=[JohnDoe] meals::min=[3] meals::max=[3] meals::sum=[3] ts=[2021-03-01

00:00:00]

courier=[*] customer=[MaryAnn] meals::min=[3] meals::max=[3] meals::sum=[3] ts=[2021-03-01

00:00:00]

courier=[*] customer=[PaulD] meals::min=[12] meals::max=[12] meals::sum=[12] ts=[2021-03-01

00:00:00]

courier=[QDEX] customer=[*] meals::min=[3] meals::max=[5] meals::sum=[8] ts=[2021-03-01 00:00:00]

courier=[QDEX] customer=[JaneDoe] meals::min=[5] meals::max=[5] meals::sum=[5] ts=[2021-03-01

00:00:00]

courier=[QDEX] customer=[JohnDoe] meals::min=[3] meals::max=[3] meals::sum=[3] ts=[2021-03-01

00:00:00]

courier=[QSEND] customer=[*] meals::min=[3] meals::max=[12] meals::sum=[15] ts=[2021-03-01

00:00:00]

courier=[QSEND] customer=[MaryAnn] meals::min=[3] meals::max=[3] meals::sum=[3] ts=[2021-03-01

00:00:00]

courier=[QSEND] customer=[PaulD] meals::min=[12] meals::max=[12] meals::sum=[12] ts=[2021-03-01

00:00:00]

The query below selects all deliveries from all couriers to the customer ‘PaulD’:

> select * from delivery_index2_courier where courier='*' and

customer='PaulD';

courier=[*] customer=[PaulD] meals::min=[12] meals::max=[12] meals::sum=[12] ts=[2021-03-01

00:00:00]

Like any other indexes in JaguarDB, query by the leading column in the index is very fast

because it is ordered first in the storage structure of the index.

187

Delete Data From Time Series

Normally users store time series data and do not expect to delete the data. However, in case a

user wishes to delete records in time series stores, the user can execute the delete command.

Records in the base stores are removed but records in the tick stores are not deleted. The user

however can execute the delete command on a tick store specifically.

For example:

delete from delivery where courier='QSEND';

select * from delivery;

ts=[2021-03-25 22:42:22.163801] courier=[QDEX] customer=[JohnDoe] meals=[3] addr=[110

A Street, CA 90222]

ts=[2021-03-25 22:42:22.164523] courier=[QDEX] customer=[JaneDoe] meals=[5] addr=[110

B Street, CA 90001]

We can see that records of courier ‘QSEND’ are deleted in the base store ‘delivery’, but the tick

stores still have them:

> select * from delivery@1M;

ts=[2021-03-01 00:00:00] courier=[*] customer=[*] meals=[12] meals::sum=[23]

meals::min=[3] meals::max=[12] meals::avg=[6] meals::var=[44] counter=[4]

ts=[2021-03-01 00:00:00] courier=[*] customer=[JaneDoe] meals=[5] meals::sum=[5]

meals::min=[5] meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[JohnDoe] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[MaryAnn] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[PaulD] meals=[12] meals::sum=[12]

meals::min=[12] meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[*] meals=[5] meals::sum=[8]

meals::min=[3] meals::max=[5] meals::avg=[4] meals::var=[0] counter=[2]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[JaneDoe] meals=[5] meals::sum=[5]

meals::min=[5] meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[JohnDoe] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

188

ts=[2021-03-01 00:00:00] courier=[QSEND] customer=[*] meals=[12] meals::sum=[15]

meals::min=[3] meals::max=[12] meals::avg=[8] meals::var=[0] counter=[2]

ts=[2021-03-01 00:00:00] courier=[QSEND] customer=[MaryAnn] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QSEND] customer=[PaulD] meals=[12] meals::sum=[12]

meals::min=[12] meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

> select * from delivery@1y;

ts=[2021-01-01 00:00:00] courier=[*] customer=[*] meals=[12] meals::sum=[23]

meals::min=[3] meals::max=[12] meals::avg=[6] meals::var=[44] counter=[4]

ts=[2021-01-01 00:00:00] courier=[*] customer=[JaneDoe] meals=[5] meals::sum=[5]

meals::min=[5] meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[JohnDoe] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[MaryAnn] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[PaulD] meals=[12] meals::sum=[12]

meals::min=[12] meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[*] meals=[5] meals::sum=[8]

meals::min=[3] meals::max=[5] meals::avg=[4] meals::var=[0] counter=[2]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[JaneDoe] meals=[5] meals::sum=[5]

meals::min=[5] meals::max=[5] meals::avg=[5] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[JohnDoe] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QSEND] customer=[*] meals=[12] meals::sum=[15]

meals::min=[3] meals::max=[12] meals::avg=[8] meals::var=[0] counter=[2]

ts=[2021-01-01 00:00:00] courier=[QSEND] customer=[MaryAnn] meals=[3] meals::sum=[3]

meals::min=[3] meals::max=[3] meals::avg=[3] meals::var=[0] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QSEND] customer=[PaulD] meals=[12] meals::sum=[12]

meals::min=[12] meals::max=[12] meals::avg=[12] meals::var=[0] counter=[1]

How about the records in the index? Are they deleted from the indexes?

> select * from delivery_index_courier;

courier=[QDEX] customer=[JaneDoe] meals=[5] ts=[2021-03-25 22:42:22.164523]

courier=[QDEX] customer=[JohnDoe] meals=[3] ts=[2021-03-25 22:42:22.163801]

We can see the records in the index for the base store are deleted.

189

If we delete the records in the tick stores:

delete from delivery@1M where courier='QSEND';

delete from delivery@1y where courier='QSEND';

then the records in the tick stores and the records in the indexes for the tick stores are deleted:

> select * from delivery@1M;

ts=[2021-03-01 00:00:00] courier=[*] customer=[*] meals=[23] counter=[4]

ts=[2021-03-01 00:00:00] courier=[*] customer=[JaneDoe] meals=[5] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[JohnDoe] meals=[3] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[MaryAnn] meals=[3] counter=[1]

ts=[2021-03-01 00:00:00] courier=[*] customer=[PaulD] meals=[12] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[*] meals=[8] counter=[2]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[JaneDoe] meals=[5] counter=[1]

ts=[2021-03-01 00:00:00] courier=[QDEX] customer=[JohnDoe] meals=[3] counter=[1]

> select * from delivery@1y;

ts=[2021-01-01 00:00:00] courier=[*] customer=[*] meals=[23] counter=[4]

ts=[2021-01-01 00:00:00] courier=[*] customer=[JaneDoe] meals=[5] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[JohnDoe] meals=[3] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[MaryAnn] meals=[3] counter=[1]

ts=[2021-01-01 00:00:00] courier=[*] customer=[PaulD] meals=[12] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[*] meals=[8] counter=[2]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[JaneDoe] meals=[5] counter=[1]

ts=[2021-01-01 00:00:00] courier=[QDEX] customer=[JohnDoe] meals=[3] counter=[1]

In general, if the data in a store is deleted, then data in the associated indexes will be deleted.

Truncate Time Series

190

A base store can be truncated (deleting all records but keeping the store structure) and the

indexes associated with the base store will be automatically truncated.

truncate store delivery;

select count(*) from delivery;

test.delivery has 0 rows

select count(*) from delivery@1M;

test.delivery@1M has 11 rows

select count(*) from delivery@1y;

test.delivery@1y has 11 rows

select count(*) from delivery_index_courier;

test.delivery_index_courier has 0 rows

select count(*) from delivery_index_courier@1M;

test.delivery_index_courier@1M has 11 rows

select count(*) from delivery_index_courier@1y;

test.delivery_index_courier@1y has 11 rows

If a base store is truncated, its tick stores are left untouched. A tick store can be manually

truncated and its associated index will be truncated accordingly:

truncate store delivery@1M;

select count(*) from test.delivery@1M;

test.delivery@1M has 0 rows

select count(*) from delivery_index_courier@1M;

test.delivery_index_courier@1M has 0 rows

truncate store delivery@1y;

select count(*) from test.delivery@1y;

test.delivery@1y has 0 rows

select count(*) from delivery_index_courier@1y;

test.delivery_index_courier@1y has 0 rows

191

Drop Time Series

If a base store is dropped, all its data are permanently deleted. Also, all its tick stores are

dropped, and all associated indexes including the indexes for the base store, and the indexes

for the tick stores are all dropped. Be cautious when you want to drop stores.

Space and Time Data Management

The following example illustrates how a user can manage time series data and location-based

data in one JaguarDB ‘rides’ store. The rides store is created by the following command:

CREATE store timeseries(5m,30m,1d,1M) rides (

 key:

 pickup_datetime datetimesec,

 dropoff_datetime datetimesec,

 driver_name char(16),

 rate_type char(8),

 payment_type char(1),

 value:

 passenger_count rollup int,

 trip_distance rollup float(8.2),

 pickup_location point(srid:wgs84),

 dropoff_location point(srid:wgs84),

 fare_amount rollup float(8.2),

 tip_amount rollup float(6.2),

 tolls_amount float(6.2),

 total_amount rollup float(8.2),

);

192

Here the ‘rides’ is the base store, and there are four tick stores created for ticks of five minutes,

thirty minutes, one day, and one month. Each rollup column will generate five heap columns

in the tick stores. Passenger pickup location and drop off location are represented by points

having longitude and latitude coordinates in degrees. Data can be inserted by the following

example:

insert into rides values ('2021-02-11 09:22:12', '2021-02-11 09:50:42', 'DriverAHM',

'REG', '1', '2', '48.6', point(122.036 37.7), point(122.385 37.622), '56.5', '10.5',

'5.0', '72.0');

insert into rides values ('2021-02-11 09:32:12', '2021-02-11 09:58:42', 'DriverJHS',

'HYP', '1', '3', '49.2', point(122.035 37.369), point(122.381 37.621), '73.5', '12.5',

'5.8', '91.8');

insert into rides values ('2021-02-12 09:32:12', '2021-02-12 13:50:42', 'DriverAHM',

'REG', '1', '2', '66.8', point(121.8864 37.3382), point(122.382 37.622), '96.1',

'20.5', '8.0', '124.6');

With the data we have, we can answer the following questions:

(1) How many rides took place on each day?

select pickup_datetime as day, counter as rides from rides@1d where

driver_name='*' and rate_type='*' and payment_type='*';

Answer:

day=[2021-02-11 00:00:00] rides=[2]

day=[2021-02-12 00:00:00] rides=[1]

(2) How many rides took place on the day of ‘2021-02-12’?

select pickup_datetime as day, counter as rides from rides@1d where

driver_name='*' and rate_type='*' and payment_type='*' and

pickup_datetime='2021-02-11 00:00:00';

Answer:

day=[2021-02-11 00:00:00] rides=[2]

(3) What is the average fare amount?

select avg(fare_amount::avg) avg_fare_mount from rides@1M where

driver_name='*' and rate_type='*' and payment_type='*';

Answer:

avg_fare_mount=[75.366667]

(4) What is the average fare amount in February of year 2021?

select pickup_datetime as month, fare_amount::avg avg_fare_mount from rides@1M

where driver_name='*' and rate_type='*' and payment_type='*' and

pickup_datetime='2021-02-01 00:00:00';

193

Answer:

month=[2021-02-01 00:00:00] avg_fare_mount=[75.3666666667]

(5) What is the average fare amount for each driver?

select driver_name, avg(fare_amount::avg) avg_fare_mount from rides@1M where

driver_name != '*' and rate_type='*' and payment_type='*' group by driver_name;

Answer:

driver_name=[DriverAHM] avg_fare_mount=[76.3]

driver_name=[DriverJHS] avg_fare_mount=[73.5]

(6) How many rides took place for each rate type?

select rate_type, sum(counter) rides from rides@1M where rate_type != '*' and

driver_name='*' and payment_type='*' group by rate_type;

Answer:

rate_type=[HYP] rides=[1.0]

rate_type=[REG] rides=[2.0]

(7) What are the monthly average trip distance for all drivers?

select pickup_datetime as month, trip_distance::avg from rides@1M where

rate_type='*' and payment_type='*' and driver_name='*';

Answer:

month=[2021-02-01 00:00:00] trip_distance::avg=[54.8666666667]

(8) What are the monthly average trip distance and maximum average distance for

each driver?

select driver_name driver, pickup_datetime as month, avg(trip_distance::avg)

avg_distance, max(trip_distance::avg) max_avg_distance from rides@1M where

rate_type='*' and payment_type='*' and driver_name != '*' group by driver_name;

Answer:

driver=[DriverAHM] month=[2021-02-01 00:00:00] avg_distance=[57.7] max_avg_distance=[57.7]

driver=[DriverJHS] month=[2021-02-01 00:00:00] avg_distance=[49.2] max_avg_distance=[49.2]

(9) How many rides took place every 5 minutes for the day of '2021-02-11' ?

select pickup_datetime time, counter rides from rides@5m where driver_name='*'

and rate_type='*' and payment_type='*' and pickup_datetime >= '2021-02-11

00:00::00' and pickup_datetime < '2021-02-12 00:00:00' ;

Answer:

time=[2021-02-11 09:20:00] rides=[1]

194

time=[2021-02-11 09:30:00] rides=[1]

(10) How many rides on the day of '2021-02-11' originated from within 10

kilometers of Sunnyvale, California in 30 minute buckets?

select pickup_datetime as day from rides where distance(pickup_location,

point(122.035 37.369), 'center') < 18000;

(11) What is the average total amount by 5 minutes for the day of 2021-02-11?

select pickup_datetime start5min, window(5m, pickup_datetime),

avg(total_amount) avg_total_amount

from rides

where date(pickup_datetime)='2021-02-11'

group by pickup_datetime;

The window function creates time windows of 5 minutes based on the column

‘pickup_datetime’. The average is taken in the 5 minute windows by grouping the windows.

Spring Boot Framework

Spring Boot provides a platform for Java developers to develop a stand-alone and production-

grade spring AI application. The following examples use Maven 3.9.3 (apache-maven-3.9.3) for

Java project building, and Java 19.0.2 for compilation. The following pom.xml file is ready for

Maven to build the project:

File pom.xml:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.jaguardb</groupId>

 <artifactId>myproject</artifactId>

 <version>0.0.1-SNAPSHOT</version>

195

 <!-- Inherit defaults from Spring Boot -->

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.2</version>

 </parent>

 <!-- Add typical dependencies for a web application -->

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>com.jaguardb</groupId>

 <artifactId>jaguar-jdbc</artifactId>

 <version>2.1</version>

 </dependency>

</dependencies>

 <!-- Package as an execustore jar -->

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.11.0</version>

 <configuration>

 <source>1.9</source>

 <target>1.9</target>

 </configuration>

196

 </plugin>

 </plugins>

 </build>

 <!-- Add Spring repoistories -->

 <!-- (you don't need this if you are using a .RELEASE version) -->

 <repositories>

 <repository>

 <id>spring-snapshots</id>

 <url>https://repo.spring.io/snapshot</url>

 <snapshots><enabled>true</enabled></snapshots>

 </repository>

 <repository>

 <id>spring-milestones</id>

 <url>https://repo.spring.io/milestone</url>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-snapshots</id>

 <url>https://repo.spring.io/snapshot</url>

 </pluginRepository>

 <pluginRepository>

 <id>spring-milestones</id>

 <url>https://repo.spring.io/milestone</url>

 </pluginRepository>

 </pluginRepositories>

</project>

To invoke JaguarDB JDBC classed, the Jagua JDBC class jar file needs to be installed for

Maven to find the classes with the following command:

JAR=$HOME/jaguar/lib/jaguar-jdbc-2.1.jar

mvn install:install-file -Dfile=$JAR -DgroupId=com.jaguardb \

 -DartifactId=jaguar-jdbc -Dversion=2.1 -Dpackaging=jar

197

In the same directory where the file pom.xml is located, you can create a directory

src/main/java, and create a Java file for your project:

src/main/java/JaguarDBExample.java file:

import java.io.*;

import java.sql.DatabaseMetaData;

import java.sql.PreparedStatement;

import javax.sql.DataSource;

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.DriverManager;

import java.util.Random;

import com.jaguar.jdbc.JaguarDriver;

import com.jaguar.jdbc.JaguarDataSource;

import com.jaguar.jdbc.JaguarPreparedStatement;

import com.jaguar.jdbc.JaguarResultSetMetaData;

import org.springframework.boot.*;

import org.springframework.boot.autoconfigure.*;

import org.springframework.stereotype.*;

import org.springframework.web.bind.annotation.*;

@RestController

@EnableAutoConfiguration

public class JaguarDBExample {

 @RequestMapping("/")

 String home() {

 return "Hello World from JaguarDB SprintBoot!";

 }

198

 @RequestMapping("/create")

 String create() {

 try {

 Statement statement = connection_.createStatement();

 statement.executeUpdate("create store boot123 (key: zid zuid, value: addr

char(32));");

 } catch (SQLException e) {

 return "create store exception";

 }

 return "Created store boot123 key: zid zuid, value: addr char(32)";

}

 @RequestMapping("/insert")

 String insert() {

 StringBuffer sb = new StringBuffer();

 try {

 JaguarStatement jst;

 Statement statement = connection_.createStatement();

 statement.executeUpdate("insert into boot123 (addr) values ('v1000')");

 jst = (JaguarStatement)statement;

 sb.append(jst.getLastZuid() + "
");

 statement.executeUpdate("insert into boot123 (addr) values ('v2000')");

 jst = (JaguarStatement)statement;

 sb.append(jst.getLastZuid() + "
");

 statement.executeUpdate("insert into boot123 (addr) values ('v3000')");

 jst = (JaguarStatement)statement;

 sb.append(jst.getLastZuid() + "
");

 } catch (SQLException e) {

 return "insert into store exception";

 }

199

 sb.append("
Inserted records into store boot123");

 return sb.toString();

}

 @RequestMapping("/select")

 String select() {

 ResultSet rs;

 try {

 Statement statement = connection_.createStatement();

 rs = statement.executeQuery("select * from boot123");

 } catch (SQLException e) {

 return "select exception";

 }

 String key, val;

 StringBuffer sb = new StringBuffer();

 try {

 while(rs.next()) {

 key = rs.getString("uid");

 val = rs.getString("addr");

 sb.append(key);

 sb.append(":");

 sb.append(val);

 sb.append("
");

 }

 } catch (SQLException e) {

 return "select next() exception";

 }

 String hdr = "select result:

";

 String ret = hdr + sb.toString();

 return ret;

200

}

 @RequestMapping("/drop")

 String drop() {

 try {

 Statement statement = connection_.createStatement();

 statement.executeUpdate("drop store if exists boot123");

 } catch (SQLException e) {

 return "drop exception";

 }

 return "store boot123 is dropped";

 }

 public static void main(String[] args) throws Exception {

 System.loadLibrary("JaguarClient");

 ds_ = new JaguarDataSource("127.0.0.1", 8888, "test");

 connection_ = ds_.getConnection("admin_api_key");

 SpringApplication.run(JaguarDBExample.class, args);

 }

 static private DataSource ds_;

 static private Connection connection_;

}

To build and run the Spring Boot application, you can execute the following command:

export LD_LIBRARY_PATH=$HOME/jaguar/lib

./mvnw spring-boot:run

The command mvnw is created in the current directory by the following command:

201

 mvn wrapper:wrapper

While the Sprint Boot application is up and running, you can open the following URL in your

browser:

http://192.168.1.58:8080/

http://192.168.1.58:8080/create

http://192.168.1.58:8080/insert

http://192.168.1.58:8080/select

http://192.168.1.58:8080/drop

The IP address 192.168.1.58 represents the host where the Spring Boot application is running.

The example provides a basic demonstration of how an application can interact with JaguarDB.

However, developers have the potential to create much more sophisticated applications by

leveraging the capabilities of JaguarDB and combining them with their expertise in Java

programming.

JaguarLite

JaguarLite Embedded Vector Database

JaguarLite is a powerful, embedded vector database designed to run seamlessly on any Linux

system without requiring server setup or external services. It is a streamlined version of

JaguarDB, offering the full capabilities of a vector database in a compact, self-contained form

factor ideal for edge devices, embedded AI systems, and local applications. JaguarLite provides

the following components:

 - JaguarLite binary program

 - JaguarLite header and library files

 - JaguarLite Python development API

 - JaguarLite example and test programs

202

JaguarLite delivers:

 . Standalone operation — no server process, no dependencies

 . Full-featured vector search and indexing identical to JaguarDB

 . Multi-tenant architecture — each tenant can be maintained by its own isolated databases

and tables

 . Flexible data support — including vector, time-series, and geospatial data

Developers can integrate JaguarLite easily using:

 * C++ API — including header files, static libraries, and shared libraries

 * Python API — for fast prototyping and AI/ML integration in Python projects

Installation is quick and hassle-free. Simply run the following command on any Linux systems:

 curl -fsSL http://jaguardb.com/jaguarlite.sh|sh

The installation package includes ready-to-use code examples, enabling developers to rapidly

build and deploy vector-powered applications on everything from cloud nodes to AI edge

devices. JaguarLite combines simplicity, speed, and rich functionality, making it a versatile tool

for modern data intelligence at any scale.

Once installed, all JaguarLite programs and data are stored under the $HOME/jaguarlite

directory. During updates, only the binary executables and libraries are replaced—user data

remains untouched to ensure safety and continuity. The example subdirectory contains sample

projects demonstrating how to develop AI applications using both C++ and Python.

The following examples illustrate how to use JaguarLite with C++ and Python.

203

C++ Program test_cpp.cc:

#include <JaguarLite.h>

#include <iostream>

// Test simple data insert and select

void test_simple(JaguarLite &db)

{

 db.execute("create table t1(key: a int, value: b int)");

 db.startQuery("desc t1");

 db.read();

 std::string msg = db.getMessage();

 std::cout << msg << std::endl;

 db.endQuery();

 std::cout << std::endl;

 db.execute("insert into t1 values ('1', '100')");

 db.execute("insert into t1 values ('2', '200')");

 db.execute("insert into t1 values ('3', '300')");

 db.execute("insert into t1 values ('4', '400')");

 db.startQuery("select * from t1");

 while (db.read()) {

 db.printRow();

 std::string jsonmsg = db.json();

 std::cout << jsonmsg << std::endl;

204

 }

 if (db.hasError()) {

 std::cout << "Error: " << db.error() << std::endl;

 }

 db.endQuery();

}

// Test vector data insert and select

void test_vector(JaguarLite &db)

{

 db.execute("create store vec1 (v vector(10,

'cosine_fraction_float'), v:text char(64))");

 db.execute("insert into vec1 values ('0.8, 0.4, 0.2, 0.3, 0.7,

0.03, 0.3, 0.41, 0.2, 0.3', ' vector data of apple') ");

 db.execute("insert into vec1 values ('0.7, 0.4, 0.1, 0.3, 0.5,

0.23, 0.6, 0.51, 0.1, 0.1', ' vector data of pear') ");

 db.execute("insert into vec1 values ('0.2, 0.5, 0.3, 0.4, 0.6,

0.63, 0.4, 0.61, 0.3, 0.5', ' vector data of orange') ");

 db.startQuery("select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3,

0.1, 0.5, 0.01, 0.2', 'topk=3,type=cosine_fraction_float') from

vec1");

 while (db.read()) {

 std::string jsonmsg = db.json();

 std::cout << jsonmsg << std::endl;

 }

 if (db.hasError()) {

 std::cout << "Error: " << db.error() << std::endl;

205

 }

 db.endQuery();

}

int main(int argc, char *argv[])

{

 /// create or use mydb of customer1

 JaguarLite db1("mydb", "customer1");

 test_simple(db1);

 // create or use vectordb of customer2

 JaguarLite db2("myvectordb", "customer2");

 test_vector(db2);

 return 0;

}

Here is how to build and execute the C++ program:

test_cpp.sh:

#!/bin/bash

Example for building statically linked and dynamically linked

JaguarLite programs

echo "Static linking"

g++ -I$HOME/jaguarlite/include -static -o test_cpp_static \

 test_cpp.cc $HOME/jaguarlite/lib/libjaguarlite.a 2>/dev/null

206

./test_cpp_static

echo "Dynamic linking"

export LD_LIBRARY_PATH=$HOME/jaguarlite/lib

g++ -I$HOME/jaguarlite/include -o test_cpp_dynamic \

 test_cpp.cc -L$HOME/jaguarlite/lib -ljaguarlite -lGeographic -lgmp

./test_cpp_dynamic

The following example demonstrates how to program the JaguarLite using Python:

test_jlite.py:

from jaguarlitepython import JaguarLite

''' Test simple data insert and select '''

def test_simple(db):

 db.execute("create table t1(key: a int, value: b int)")

 db.startQuery("desc t1")

 db.read()

 msg = db.getMessage()

 print(f"{msg}")

 db.endQuery()

 print("\n")

 db.execute("insert into t1 values ('1', '100')")

 db.execute("insert into t1 values ('2', '200')")

207

 db.insert({ "table": "t1", "a": "3", "b": "300" })

 db.insert({ "table": "t1"}, ['4', '400'])

 db.insert({ "table": "t1"}, ['5', '500'])

 db.startQuery("select * from t1")

 while db.read():

 db.printRow()

 jsonmsg = db.json()

 print(f"{jsonmsg}")

 if db.hasError():

 print(f"error={db.error()}")

 db.endQuery()

''' Test vector data insert and select '''

def test_vector(db):

 db.execute("create store vec1 (v vector(10,

'cosine_fraction_float'), v:text char(64))")

 db.execute("insert into vec1 values ('0.8, 0.4, 0.2, 0.3, 0.7,

0.03, 0.3, 0.41, 0.2, 0.3', ' vector data of apple') ")

 db.execute("insert into vec1 values ('0.7, 0.4, 0.1, 0.3, 0.5,

0.23, 0.6, 0.51, 0.1, 0.1', ' vector data of pear') ")

 db.execute("insert into vec1 values ('0.2, 0.5, 0.3, 0.4, 0.6,

0.63, 0.4, 0.61, 0.3, 0.5', ' vector data of orange') ")

 db.startQuery("select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3,

0.1, 0.5, 0.01, 0.2', 'topk=3,type=cosine_fraction_float') from vec1")

 while db.read():

 jsonmsg = db.json()

208

 print(f"{jsonmsg}")

 if db.hasError():

 print(f"error={db.error()}")

 db.endQuery()

if __name__ == '__main__':

 #### create or use mydb of customer1

 db1 = JaguarLite("mydb", "customer1")

 test_simple(db1)

 #### create or use vectordb of customer2

 db2 = JaguarLite("myvectordb", "customer2")

 test_vector(db2)

Here is how to execute the Python program by setting the required environment variables

LD_LIBRARY_PATH and PYTHONPATH:

#!/bin/sh

export LD_LIBRARY_PATH=$HOME/jaguarlite/lib:$LD_LIBRARY_PATH

export PYTHONPATH=$LD_LIBRARY_PATH:$PYTHONPATH

python test_jlite.py

209

Summary

JaguarDB is a massive linearly scalable vector database that can be used as a high-performant

vector data store, search engine, indexing engine. Jaguar has strong support for vector data,

time-series and location-based data. It allows fast similarity search, anomaly detection, scalar

and vector indexing. Jaguar integrates vector data, time-series data, location data, documents

into one for the full control of AI systems.

JaguarLite is a high-performance, embedded vector database designed for resource-constrained

environments where speed, efficiency, and small footprint are critical. Despite its lightweight

architecture, it delivers powerful capabilities for managing, storing, and querying high-

dimensional vector embeddings—making it ideal for on-device AI, edge computing, and real-

time similarity search.

Reference

Vector Search

import jaguarpy, sys, json

from sentence_transformers import SentenceTransformer

store text data into jaguardb

def storeText(jag, model, text):

 sentences = [text]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_separated_str = ",".join([str(x) for x in embeddings[0]])

 istr = "insert into textvec values ('" + comma_separated_str + "', '" + text + "')"

 jag.execute(istr)

 return jag.getLastZuid()

210

search similar text data from jaguadb

def searchSimilarTexts(jag, model, queryText, K):

 sentences = [queryText]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_separated_str = ",".join([str(x) for x in embeddings[0]])

 qstr = "select similarity(v, '" + comma_separated_str

 qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')"

 qstr += " from textvec"

 jag.query(qstr)

 jsonstr = ''

 while jag.fetch():

 jsonstr = jag.json()

 return jsonstr

def getTextByVID(jag, vid):

 qstr =" select zid from test. textvec. textvec_idx where v='" + vid + "'"

 zid = ''

 jag.query(qstr)

 while jag.fetch():

 zid = jag.getValue("zid")

 qstr = "select text from textvec where zid='" + zid + "'"

 jag.query(qstr)

 txt = ''

 while jag.fetch():

 txt = jag.getValue("text")

 return txt

def retrieveTopK(jag, model, query_text, K):

 print("Query: " + query_text)

 json_str = searchSimilarTexts(jag, model, query_text, K)

211

 json_obj = json.loads(json_str)

 i = 0;

 print("\n")

 print("Retrieved similar texts: ")

 for rec in json_obj:

 dat = rec[str(i)]

 print("\n")

 print("Rank: " + str(i+1))

 vid = dat["id"]

 print("Vector ID: " + vid)

 print("Distance: " + dat["distance"])

 txt = getTextByVID(jag, vid)

 print("Text: " + txt)

 i += 1

 print("\n\n")

'''

A number of texts are first inserted into vector dabatase. Then later a user enters

a query text, the program will find top K (K=5) texts that best match the query text.

'''

def main():

 ### connect to JaguarDB

 jag = jaguarpy.Jaguar()

 host = "127.0.0.1"

 port = sys.argv[1]

 user = "user-api-key"

 vectordb = "test"

 rc = jag.connect(host, port, user, vectordb)

 print ("Connected to JaguarDB server")

 ### create store for vector data. Notice that 1024 is the dimension for BAAI/bge-large-en

model

212

 jag.execute("drop store if exists textvec")

 jag.execute("create store textvec (key: zid zuid, value: v vector(1024,

'cosine_fraction_short'), text char(2048))")

 jag.execute("drop index if exists textvec_idx on textvec")

 jag.execute("create index textvec_idx on textvec(v, zid)")

 ### use the BAAI/bge-large-en model

 model = SentenceTransformer('BAAI/bge-large-en')

 ### store texts into vectordb

 text = "Human impact on the environment (or anthropogenic environmental impact) refers to

changes to biophysical environments and to ecosystems, biodiversity, and natural resources caused

directly or indirectly by humans."

 zuid1 = storeText(jag, model, text)

 text = "a group of people involved in persistent interpersonal relationships, or a large

social grouping sharing the same geographical or social territory, typically subject to the same

political authority and dominant cultural expectations. Human societies are characterized by

patterns of relationships (social relations) between individuals who share a distinctive culture

and institutions; a given society may be described as the total of such relationships among its

constituent members."

 zuid2 = storeText(jag, model, text)

 text = "In 1768, Astley, a skilled equestrian, began performing exhibitions of trick horse

riding in an open field called Ha'Penny Hatch on the south side of the Thames River, England. In

1770, he hired acrobats, tightrope walkers, jugglers and a clown to fill in the pauses between

the equestrian demonstrations and thus chanced on the format which was later named a circus.

Performances developed significantly over the next fifty years, with large-scale theatrical

battle reenactments becoming a significant feature. "

 zuid3 = storeText(jag, model, text)

 text = "Astley had a genius for trick riding. He saw that trick riders received the most

attention from the crowds in Islington. He had an idea for opening a riding school in London in

which he could also conduct shows of acrobatic riding skill. In 1768, Astley performed in an open

field in what is now the Waterloo area of London, behind the present site of St John's Church.

Astley added a clown to his shows to amuse the spectators between equestrian sequences, moving to

fenced premises just south of Westminster Bridge, where he opened his riding school from 1769

onwards and expanded the content of his shows. He taught riding in the mornings and performed his

feats of horsemanship in the afternoons."

 zuid4 = storeText(jag, model, text)

 text = "After the Amphitheatre was rebuilt again after the third fire, it was said to be very

grand. The external walls were 148 feet long which was larger than anything else at the time in

London.The interior of the Amphitheatre was designed with a proscenium stage surrounded by boxes

and galleries for spectators. The general structure of the interior was octagonal. The pit used

for the entertainers and riders became a standardised 43 feet in diameter, with the circular

enclosure surrounded by a painted four foot barrier. Astley's original circus was 62 ft (~19 m)

in diameter, and later he settled it at 42 ft (~13 m), which has been an international standard

for circuses since."

213

 zuid5 = storeText(jag, model, text)

 text = "According to the Big Bang theory, the energy and matter initially present have become

less dense as the universe expanded. After an initial accelerated expansion called the

inflationary epoch at around 10−32 seconds, and the separation of the four known fundamental

forces, the universe gradually cooled and continued to expand, allowing the first subatomic

particles and simple atoms to form. Dark matter gradually gathered, forming a foam-like structure

of filaments and voids under the influence of gravity. Giant clouds of hydrogen and helium were

gradually drawn to the places where dark matter was most dense, forming the first galaxies,

stars, and everything else seen today."

 zuid6 = storeText(jag, model, text)

 text = "By comparison, general relativity did not appear to be as useful, beyond making minor

corrections to predictions of Newtonian gravitation theory. It seemed to offer little potential

for experimental test, as most of its assertions were on an astronomical scale. Its mathematics

seemed difficult and fully understandable only by a small number of people. Around 1960, general

relativity became central to physics and astronomy. New mathematical techniques to apply to

general relativity streamlined calculations and made its concepts more easily visualized. As

astronomical phenomena were discovered, such as quasars (1963), the 3-kelvin microwave background

radiation (1965), pulsars (1967), and the first black hole candidates (1981), the theory

explained their attributes, and measurement of them further confirmed the theory."

 zuid7 = storeText(jag, model, text)

 text = "In astronomy, the magnitude of a gravitational redshift is often expressed as the

velocity that would create an equivalent shift through the relativistic Doppler effect. In such

units, the 2 ppm sunlight redshift corresponds to a 633 m/s receding velocity, roughly of the

same magnitude as convective motions in the sun, thus complicating the measurement.[9] The GPS

satellite gravitational blueshift velocity equivalent is less than 0.2 m/s, which is negligible

compared to the actual Doppler shift resulting from its orbital velocity."

 zuid8 = storeText(jag, model, text)

 text = "Turn on the sprinkler system. In order to locate the break or leak in the sprinkler

system, you need to run water through it. Turn on the sprinkler system to activate the flow of

water. Allow the water to run for about 2 minutes before you check the lines. Do this in the

daytime, when you'll have an easier time spotting the leak. If your sprinkler system is separated

into zones, activate the zones one at a time so you can identify the break or leak more easily."

 zuid9 = storeText(jag, model, text)

 text = "Check for water bubbling up from the soil. If you see a pool of water or water coming

from the soil,then there’s a leak in the sprinkler line buried underneath. Mark the general

location of the leak or break so you can identify it when the water is turned off. Place an item

like a shovel or a rock on the ground near the leak. Turn off the sprinkler system after you’ve

found the leak. If you’ve found the signs of a leak and located the region where the line is

leaking or broken, turn off the water so you can repair the line. Use the shut-off valve in the

control box to stop the flow of water through the system."

 zuid10 = storeText(jag, model, text)

 text = "In fact, Antarctica is such a good spot for meteorite hunters that crews of

scientists visit every year, searching for these otherworldly rocks, driving around the surface

until they spot a lone dark rock on an otherwise unbroken expanse of white. However, you don’t

always have to travel to the other side of the world to find a meteorite. Sometimes meteorites

will come to you. Keep an eye open for local reports of brilliant fireballs lighting your

region’s sky. Debris from such displays scatters across the ground and \

 sometimes hits structures or vehicles. Watch for information about fireballs in your

area on the websites of the American Meteor Society or the International Meteor Organization."

214

 zuid11 = storeText(jag, model, text)

 text = "Most tornadoes are found in the Great Plains of the central United States – an ideal

environment for the formation of severe thunderstorms. In this area, known as Tornado Alley,

storms are caused when dry cold air moving south from Canada meets warm moist air traveling north

from the Gulf of Mexico. Tornadoes can form at any time of year, but most occur in the spring and

summer months along with thunderstorms. May and June are usually the peak months for tornadoes.

The Great Plains are conducive to the type of thunderstorms (supercells) that spawn tornadoes. It

is in this region that cool, dry air in the upper levels of the atmosphere caps warm, humid

surface air. This situation leads to a very unsstore atmosphere and the development of severe

thunderstorms."

 zuid12 = storeText(jag, model, text)

 ### Make a query and get similar texts from database

 query_text = "More recently, that focus has shifted eastward by 400 to 500 miles. In the past

decade or so tornadoes have become prevalent in eastern Missouri and Arkansas, western Tennessee

and Kentucky, and northern Mississippi and Alabama—a new region of concentrated storms. Tornado

activity in early 2023 epitomized the trend."

 K = 3;

 retrieveTopK(jag, model, query_text, K)

 ### Make another query and get similar texts from database

 query_text = "Think of designing a landscape for the bare lot surrounding your new home as an

adventure in creativity. Perhaps your property needs only a few small, easily doable projects to

make it more attractive. Either way, it's important to consider how each change will relate to

the big picture. Stand back from time to time to see the entire landscape and how each part fits

into it."

 K = 3;

 retrieveTopK(jag, model, query_text, K)

 ### select a vector from one column

 jag.query("select vector(v, 'type=cosine_fraction_short') from textvec where zid='"+ zuid1

+"'")

 while jag.fetch():

 print("json ", jag.json())

 jag.close()

 jag = None

if __name__ == "__main__":

main()

215

Location Data

The following statements are examples of JaguarDB geospatial data management.

drop store if exists geom1;

create store if not exists geom1 (key: a int, value: pt point(srid:4326), b int);

desc geom1 detail;

insert into geom1 values (1, point(22 33), 123);

insert into geom1 (a, pt, b) values (2, point(22 33), 123);

insert into geom1 (b, pt, a) values (222, point(22 33), 12);

select * from geom1;

drop index if exists geom1_idx1 on geom1;

create index geom1_idx1 on geom1(b,pt);

select * from geom1_idx1;

drop store if exists geom2;

create store if not exists geom2 (key: a int, value: pt1 point, b int, uid uuid, pt2

point(srid:wgs84));

desc geom2;

insert into geom2 values (1, point(22 33), 123, point(99 221));

insert into geom2 values (10, json({"type":"Point", "coordinates": [2,3]}), 123,

json({"type":"Point", "coordinates":[5,9]}));

insert into geom2 (a, pt1, pt2, b) values (2, point(22 33), point(23 421), 123);

insert into geom2 (b, pt2, pt1, a) values (222, point(22 33), point(90 21), 17);

select * from geom2;

drop index if exists geom2_idx1 on geom2;

create index geom2_idx1 on geom2(b,pt2);

select * from geom2_idx1;

drop store if exists geom3;

create store if not exists geom3 (key: pt1 point, value: b int, uid uuid, a int, pt2

point);

desc geom3;

insert into geom3 values (point(22 33), 123, 2, point(99 221));

insert into geom3 (b, pt2, pt1, a) values (2, point(25 33), point(23 451), 153);

216

select * from geom3;

drop index if exists geom3_idx1 on geom3;

create index geom3_idx1 on geom3(b,pt2,uid);

select * from geom3_idx1;

drop store if exists d5;

create store if not exists d5 (key: a int, pt1 point3d, b int, pt2 point3d, value: c

int, pt3 point3d, d int, pt4 point3d(srid:wgs84));

desc d5;

insert into d5 values(1, point3d(22 33 4), 23, point3d(99 22 1), 244, point3d(8 2 3),

234, point3d(8 2 3));

insert into d5 values(2, point3d(32 83 0), 23, point3d(94 82 1), 214, point3d(9 7 2),

234, point3d(1 2 3));

select * from d5;

drop index if exists d5_idx on d5;

create index d5_idx on d5(pt3, pt4, d, c);

select * from d5_idx;

drop store if exists d6;

create store if not exists d6 (key: a int, pt1 point, b int, pt2 point, value: c int,

pt3 point, d int, pt4 point3d);

desc d6;

insert into d6 values(1, point(22 33), 23, point(99 1), 244, point(8 3), 234,

point3d(8 2 3));

insert into d6 values(2, point(32 83), 23, point(94 82), 214, point(9 2), 234,

point3d(1 2 3));

insert into d6 (pt2, a, b, pt1) values (json({"type":"Point", "coordinates":

[123,321]}), 208, 12, point(91 17));

insert into d6 (pt2, a, b, pt1) values (json({"type":"Point", "coordinates":

[124,351]}), 209, 13, point(92 19));

select * from d6;

drop index if exists d6_idx on d6;

create index d6_idx on d6(pt4, pt3, d, c);

select * from d6_idx;

drop store if exists cir1;

217

create store if not exists cir1 (key: a int, c1 circle(4326), b int, c2 circle,

value: c int, c3 circle, d int, c4 circle);

desc cir1 detail;

insert into cir1 values (100, circle(22 33 100), 123, circle(99 22 191), 2133,

circle(99 22 12), 123, circle(88 33 2211));

insert into cir1 values (101, circle(92 33 140), 523, circle(99 42 191), 2133,

circle(99 42 12), 823, circle(38 43 811));

drop index if exists cir1_idx1 on cir1;

create index cir1_idx1 on cir1(c3, d, c2);

select * from cir1_idx1;

drop store if exists sph1;

create store if not exists sph1 (key: a int, s1 sphere, b int, s2 sphere, value: c

int, s3 sphere);

desc sph1 detail;

insert into sph1 values (100, sphere(2 3 4 123), 321, sphere(99 22 33 20000), 321,

sphere(99 223 12020 29292));

insert into sph1 values (102, sphere(2 3 4 123), 321, sphere(99 22 33 20000), 321,

sphere(99 223 12020 29292));

insert into sph1 (s1, b, a, s2) values (sphere(2 3 4 123), 921, 234, sphere(99 22

33 20000));

insert into sph1 (s1, b, a, s2) values (sphere(2 32 5 123), 951, 534, sphere(99 22

33 20000));

drop index if exists sph1_idx1 on sph1;

create index sph1_idx1 on sph1(c, s2, a, s1);

select * from sph1_idx1;

drop store if exists sq1;

create store if not exists sq1 (key: a int, s1 square, b int, s2 square, value: c

int, s3 square);

desc sq1 detail;

insert into sq1 values (100, square(22 453 22222), 100, square(9 3 123), 299,

square(82 332 1212));

drop index if exists sq1_idx1 on sq1;

create index sq1_idx1 on sq1(s3);

drop store if exists cb1;

create store if not exists cb1 (key: a int, q1 cube, b int, q2 cube, value: c int, q3

cube);

218

desc cb1 detail;

insert into cb1 values (111, cube(2 3 4 1233), 1234, cube(233 22 55 9393), 3212,

cube(92 92 82 2345));

select * from cir1;

select * from sph1;

select * from sq1;

select * from cb1;

drop index if exists cb1_idx1 on cb1;

create index cb1_idx1 on cb1(q3,q2, b);

select * from cb1_idx1;

drop store if exists rect1;

create store if not exists rect1 (key: a int, r1 rectangle, value: c int);

desc rect1 detail;

insert into rect1 values (1, rectangle(22 33 88 99), 233);

insert into rect1 (c, a, r1) values (22, 31, rectangle(29 13 48 19));

drop index if exists rect1_idx1 on rect1;

create index rect1_idx1 on rect1(c, r1);

drop store if exists bx1;

create store if not exists bx1 (key: a int, b1 box, value: c int, b2 box);

desc bx1 detail;

insert into bx1 values (1, box(22 33 44 88 99 123), 233, box(9 9 9 22 22 33));

insert into bx1 (c, a, b1) values (22, 31, box(29 13 48 19 21 12));

select * from bx1;

select distance(point3d(0 0 0), b2, 'max') as maxdist from bx1;

select distance(point3d(0 0 0), b2, 'min') as mindist from bx1;

drop index if exists bx1_idx1 on bx1;

create index bx1_idx1 on bx1(b2, c);

drop store if exists cyn1;

create store if not exists cyn1 (key: a int, c1 cylinder, value: c int);

desc cyn1 detail;

219

insert into cyn1 values (1, cylinder(1 2 3 45 88 0.3), 1239);

insert into cyn1 (c, c1, a) values (13, cylinder(1 2 3 45 88), 139);

select * from cyn1;

drop index if exists cyn1_idx1 on cyn1;

create index cyn1_idx1 on cyn1(c);

select * from cyn1_idx1;

drop store if exists cn1;

create store if not exists cn1 (key: a int, c1 cone, value: c int, c2 cone);

desc cn1 detail;

insert into cn1 values (1, cone(1 2 3 45 88), 1239, cone(33 22 44 44 99 0.4 0.3));

insert into cn1 (c, c1, a) values (13, cone(1 2 3 45 88), 139);

select * from cn1;

drop index if exists cn1_idx1 on cn1;

drop index if exists cn1_idx2 on cn1;

create index cn1_idx1 on cn1(c2);

create index cn1_idx2 on cn1(c,c2);

select * from cn1_idx1;

select * from cn1_idx2;

drop store if exists el1;

create store if not exists el1 (key: a int, c1 ellipse, value: c int, c2 ellipse);

desc el1 detail;

insert into el1 values (1, ellipse(1 2 45 88), 1239, ellipse(22 44 44 99));

insert into el1 (c, c1, a) values (13, ellipse(2 3 45 88), 139);

select * from el1;

drop index if exists el1_idx1 on el1;

drop index if exists el1_idx2 on el1;

create index el1_idx1 on el1(c2,c);

create index el1_idx2 on el1(c,c2);

select * from el1_idx1;

select * from el1_idx2;

220

drop store if exists es1;

create store if not exists es1 (key: a int, c1 ellipsoid, value: c int, c2

ellipse);

desc es1 detail;

insert into es1 values (1, ellipsoid(1 2 3 45 88 99), 1239, ellipse(22 44 44 99));

insert into es1 (c, c1, a) values (13, ellipsoid(2 3 4 45 88 99), 139);

select * from rect1;

select * from bx1;

select * from cyn1;

select * from cn1;

select * from el1;

select * from es1;

drop index if exists es1_idx1 on es1;

drop index if exists es1_idx2 on es1;

drop index if exists es1_idx3 on es1;

create index es1_idx1 on es1(c2);

create index es1_idx2 on es1(c,c2);

create index es1_idx3 on es1(c1,a,c2);

select * from es1_idx1;

select * from es1_idx2;

select * from es1_idx3;

drop store if exists line1;

create store if not exists line1 (key: a int, c1 line, value: c int, c2 line);

desc line1 detail;

insert into line1 values (1, line(1 2, 45 8.3), 1239, line(44 99, 291 9.1));

insert into line1 values (3, line(1 20, 4 3), 139, line(4 9, 91 9));

select * from line1;

drop index if exists line1_idx1 on line1;

create index line1_idx1 on line1(c2, c, c1);

select * from line1_idx1;

221

drop store if exists line3d2;

create store if not exists line3d2 (key: a int, c1 line3d, value: c int, c2

line3d);

desc line3d2 detail;

insert into line3d2 values (1, line3d(1 2 45 8.3 22 3.3), 1239, line3d(44 99 291 9.1

33 44));

select * from line3d2;

drop index if exists line3d2_idx1 on line3d2;

create index line3d2_idx1 on line3d2(c2, c, c1);

select * from line3d2_idx1;

drop store if exists tri1;

create store if not exists tri1 (key: t1 triangle, value: a int);

insert into tri1 values (triangle(11 33 88 99 21 32), 123);

insert into tri1 values (triangle(31 33 18 99 33 44), 223);

drop index if exists tri1_idx1 on tri1;

create index tri1_idx1 on tri1(a);

select * from tri1_idx1;

drop store if exists tri31;

create store if not exists tri31 (key: t1 triangle3d, value: a int);

insert into tr31 values (triangle3d(11 33 88 99 23 43 9 8 2), 123);

insert into tr31 values (triangle3d(31 33 18, 99 12 34, 9 9 1), 223);

drop index if exists tri31_idx1 on tri1;

create index tri31_idx1 on tri1(a);

select * from tri31_idx1;

queries

select * from cir1 where within(point(10 22), c1);

select * from cir1 where coveredby(point(10 22), c1);

select * from cir1 where contain(c1, point(10 22));

select * from cir1 where cover(c1, point(10 22));

222

select * from cir1 where within(c1, rectangle(1 2 23 34 0.1));

x y a b nx

select * from cir1 where disjoint(c1, rectangle(1 2 23 34 0.1));

select * from cir1 where nearby(c1, rectangle(1 2 23 34 0.1), 200);

select distance(c1, point(22 33), 'center') as dist from cir1;

select distance(c1, point(22 33), 'max') as dist from cir1;

select distance(c1, point(22 33), 'min') as dist from cir1;

select distance(point(22 33), c1, 'center') as dist from cir1;

select distance(point(22 33), c1, 'max') as dist from cir1;

select distance(point(22 33), c1, 'min') as dist from cir1;

select * from cb1 where within(point3d(100 200 300), q1);

x y z

select * from cb1 where cover(q1, sphere(11 234 234 100));

x y z r

select * from cb1 where nearby(q2, sphere(31 434 235 100), 3000);

select * from cb1 where nearby(q2, ellipsoid(31 434 235 100 200 200), 3000);

select * from cb1 where nearby(q3, ellipsoid(31 434 235 100 200 300 0.1 0.2),

3000);

x y z a b c nx ny

linestring

 drop store if exists linestr1;

 create store linestr1 (key: a int, value: ls1 linestring(wgs84), b int, ls2

linestring);

 desc linestr1 detail;

 insert into linestr1 values (1, linestring(11 2,2 33 , 33 44, 55 66, 55 66, 77

88), 200, linestring(33 44, 55 66, 8 9));

 insert into linestr1 values (2, linestring(11.13 2,2.9 33 , 33 44, 5.5 6.6, 55 66,

77 88), 210, linestring(3.3 4.4, 5.5 6.6, 8.9 9));

 insert into linestr1 values (2,json('{"type":"LineString","coordinates":

[[2,3],[3,4]]}'),121,json({"type":"LineString","coordinates": [[2,3],[3,4]]}));

 select * from linestr1;

223

 select * from linestr1 where within(ls1, square(10 10 78.1));

 create index linestr1_idx1 on linestr1(b, ls2);

 desc linestr1_idx1 detail;

 select * from linestr1_idx1;

 drop store if exists linestr21;

 create store linestr21 (key: ls1 linestring(wgs84), value: a int);

 desc linestr21 detail;

 insert into linestr21 values (linestring(11 2,2 33 , 33 44, 55 66, 55 66, 77 88),

200);

 select * from linestr21;

 select * from linestr21 where within(ls1, square(10 10 78.1));

 create index linestr21_idx1 on linestr21(a);

 desc linestr21_idx1 detail;

 select * from linestr21_idx1;

 drop store if exists linestr2;

 create store linestr2 (key: ls1 linestring(wgs84), a int, value: ls2 linestring);

 desc linestr2 detail;

 insert into linestr2 values (linestring(1 2,2 33 , 33 44, 55 66, 55 66, 77 88),

200, linestring(33 44, 55 66, 8 9));

 insert into linestr2 values (linestring(1.13 2,2.9 33 , 33 44, 5.5 6.6, 55 66, 77

88), 210, linestring(3.3 4.4, 5.5 6.6, 8.9 9));

 select * from linestr2;

 select * from linestr2 where within(ls1, square(10 10 78.1));

 create index linestr2_idx1 on linestr2(ls2);

 desc linestr2_idx1 detail;

 select * from linestr2_idx1;

 drop store if exists linestr3;

 create store linestr3 (key: ls1 linestring(wgs84), a int, value: ls2 linestring, b

int);

224

 desc linestr3 detail;

 insert into linestr3 values (linestring(211 2,2 33 , 33 44, 55 66, 55 66, 77 88),

200, linestring(33 44, 55 66, 8 9), 804);

 insert into linestr3 values (linestring(211.13 2,2.9 33 , 33 44, 5.5 6.6, 55 66, 77

88), 210, linestring(3.3 4.4, 5.5 6.6, 8.9 9), 805);

 select * from linestr3;

 select * from linestr3 where within(ls2, square(10 10 78.1));

 select geojson(ls1) from linestr3 where intersect(ls1, square(10 10 78.1));

 select geojson(ls1), geojson(ls2) from linestr3 where intersect(ls1, square(10 10

78.1)) and intersect(ls2, square(10 10 1000));

 create index linestr3_idx1 on linestr3(b, ls2);

 desc linestr3_idx1 detail;

 select * from linestr3_idx1;

 drop store if exists linestr3d1;

 create store linestr3d1 (key: ls1 linestring3d(wgs84), a int, value: ls2 linestring,

b int);

 desc linestr3d1 detail;

 insert into linestr3d1 values (linestring3d(1 2 2,1 2 33 , 8 33 44, 8 55 66),

200, linestring(33 44, 55 66), 804);

 insert into linestr3d1 values (linestring3d(1.1 2 2, 2 2.9 3 , 3 3 4, 2 5 6),

210, linestring(3.3 4, 5 6), 805);

 insert into linestr3d1 values (linestring3d(0 -10 0, 0 10 0, 2 2.9 3 , 3 3 4, 2 5

6), 310, linestring(3.3 4, 5 6), 805);

 insert into linestr3d1 values (linestring3d(0 -20 0, 0 20 0, 2 2.7 3.8), 315,

linestring(3.3 4.2, 5.1 6.7), 808);

 select * from linestr3d1;

 select ls2:x, ls2:y from linestr3d1;

 select geo:id, geo:col, geo:i, ls2:x, ls2:y from linestr3d1 where ls2:x > 0;

 select * from linestr3d1 where within(ls1, cube(10 10 10 78.1));

 select * from linestr3d1 where intersect(ls1, cube(10 10 10 78.1));

 select * from linestr3d1 where intersect(ls1, linestring3d(0 0 -10, 0 0 10, 10 10

78.1));

 select geojson(ls1) from linestr3d1 where intersect(ls1, linestring3d(0 0 -10, 0 0

10, 10 10 78.1));

 select geojson(ls2) from linestr3d1 where within(ls2, square(0 0 1000000));

 create index linestr3d1_idx1 on linestr3d1(b, ls2);

225

 desc linestr3d1_idx1 detail;

 select * from linestr3d1_idx1;

 drop store if exists lstr;

 create store lstr (key: a int, value: ls linestring);

 insert into lstr values (1, linestring(0 0, 20 0));

 insert into lstr (ls, a) values (linestring(0 0, 20 0), 121);

 insert into lstr (a, ls) values (124, linestring(1 1, 20 0));

 select * from lstr;

 select geojson(ls) from lstr where intersect(ls, linestring(10 -10, 10 10));

 select geojson(ls) from lstr where within(ls, square(0 0 10000));

 drop store if exists pol1;

 create store pol1 (key: a int, value: pol polygon);

 insert into pol1 values (1, polygon((0 0, 20 0, 88 99, 0 0)));

 insert into pol1 values (21, polygon((0 0, 80 0, 80 80, 0 80, 0 0)));

 insert into pol1 values (2, json({"type":"Polygon", "coordinates": [[[0,0], [2,0],

[8,9], [0, 0]], [[1, 2], [2, 3],[1, 2]]]}));

 insert into pol1 values (3, json({"type":"Polygon", "coordinates": [[[0,0], [2,0],

[8,9], [0, 0]], [[1, 2], [2, 3],[1, 2]]]}));

 select * from pol1;

 select * from pol1 where intersect(pol, line(0 10 80 10));

 select geojson(pol) from pol1 where intersect(pol, linestring(10 -10, 10 10));

 select geojson(pol) from pol1 where within(pol, square(0 0 10000));

 select geojson(pol) from pol1 where intersect(pol, square(0 0 10000));

 drop store if exists pol2;

 create store pol2 (key: a int, value: po2 polygon, po3 polygon3d, tm timestamp

default current_timestamp, ls linestring);

 insert into pol2 values(1, polygon((0 0,2 0,8 9,0 0),(1 2,2 3,1 2)),polygon3d((1 1

1,2 2 2,3 3 3,1 1 1),(2 2 2,3 3 1,2 2 2)),linestring(30 40,40 50,5 6));

 insert into pol2 values(2, json({"type":"Polygon", "coordinates": [[[0,0], [2,0],

[8,9], [0, 0]], [[1, 2], [2, 3],[1, 2]]]}),polygon3d((4 1 2,2 2 2,3 3 3,1 9 1, 4 1

2),(2 2 2,3 3 1, 8 2 9, 2 2 2)),linestring(30 40,40 50,5 6));

 select * from pol2;

 select geojson(po3) from pol2 where within(po3, cube(0 0 0 100000));

 select geojson(po2) from pol2 where within(po2, square(0 0 100000));

226

 select geojson(po2) from pol2 where intersect(po2, square(0 0 100000));

 drop store if exists mp;

 create store mp (key: a int, value: m1 multipoint, m2 multipoint3d);

 desc mp detail;

 insert into mp (m1, a, m2) values (multipoint(1 2 , 3 4, 2 1), 100,

multipoint3d(1 2 3, 3 4 5, 2 2 1));

 insert into mp values (123, multipoint(1 2 , 3 4, 2 1), multipoint3d(1 2 3, 3 4

5, 2 2 1));

 insert into mp values (125, multipoint(1 2 , 3 4, 2 1), json({"type":"MultiPoint",

"coordinates": [[1,2,3],[3,4,5]] });

 select * from mp;

 drop store if exists mline;

 create store mline (key: a int, value: l1 multilinestring, l2 multilinestring3d);

 desc mline detail;

 insert into mline values(1, multilinestring((0 0,2 0,8 9,0 0),(1 2,2 3,1

2)),multilinestring3d((1 1 1,2 2 2,3 3 3),(2 2 2,3 3 1)));

 insert into mline values(1024, multilinestring((1 1, 2 3, 4 5 , 4 9)),

multilinestring3d((0 0 0, 1 9 9, 11 12 13, 33 32 34)));

 insert into mline values(3, json({"type":"MultiLineString","coordinates":

[[[0,0],[2,0],[8,9],[0,0]], [[1,2],[2,3],[1,2]]]}),multilinestring3d((1 1 1,2 2 2,3

3 3),(2 2 2,3 3 1)));

 select * from mline;

 select geojson(l1) from mline where intersect(l1, square(0 0 100000));

 select geojson(l2) from mline where intersect(l2, cube(0 0 0 100000));

 drop store if exists mpg;

 create store mpg (key: a int, value: p1 multipolygon, p2 multipolygon3d);

 desc mpg detail;

 insert into mpg values(1, multipolygon(((0 0,2 0,8 9,0 0),(1 2,2 3, 7 8,1

2))),multipolygon3d(((1 1 1,2 2 2,3 3 3, 1 1 1),(2 2 2,3 3 1, 3 5 6, 2 2 2))));

 insert into mpg values(2,

227

 multipolygon(((0 0,2 0,8 9,0 0),(1 2,2 3, 7 8,1 2)), ((0 0, 2 2, 3 3, 0

0))),

 multipolygon3d(((1 1 1,2 2 2,3 3 3, 1 1 1),(2 2 2,3 3 1, 3 5 6, 2 2 2))));

 insert into mpg values(3,

 multipolygon(((0 0,2 0,8 9,0 0),(1 2,2 3, 7 8,1 2)), ((0.1 0.2, 2.2 2.2, 5 5,

0.1 0.2))),

 multipolygon3d(((1 1 1,2 2 2,3 3 3, 1 1 1),(2 2 2,3 3 1, 3 5 6, 2 2 2))));

 insert into mpg values(30,

 json({ "type":"MultiPolygon","coordinates": [[[[4,0], [2,0], [8,9], [4, 0]],

[[1, 5], [2, 3],[1, 5]]], [[[4,4], [2,0], [8,9], [4, 4]], [[1, 2], [2, 3],[1,

2]]]] }),

 multipolygon3d(((1 1 1,2 2 2,3 3 3, 1 1 1),(2 2 2,3 3 1, 3 5 6, 2 2 2))));

 insert into mpg values(32,

 json({ "type":"MultiPolygon","coordinates": [[[[4,0], [2,0], [8,9], [4, 0]],

[[1, 5], [2, 3],[1, 5]]], [[[4,4], [2,0], [8,9], [4, 4]], [[1, 2], [2, 3],[1,

2]]]] })));

 select * from mpg;

 select geojson(p1) from mpg where intersect(p1, square(0 0 100000));

 select geojson(p2) from mpg where intersect(p2, cube(0 0 0 100000));

 drop store if exists rg2;

 create store rg2 (key: a int, value: dt datetime, d date, t time, r

range(datetime));

 insert into rg2 values (1, '2018-10-10 01:01:01', '2018-12-12', '12:11:11',

range('2015-10-10 01:01:01', '2028-10-10 01:01:01'));

 insert into rg2 values (2, '2014-10-10 01:01:01', '2015-12-12', '14:11:11',

range('2010-10-10 01:01:01', '2028-12-31 01:01:01'));

 select * from rg2;

 select * from rg2 where within(d, range('2000-10-10', '2030-01-01'));

 select * from rg2 where within(t, range('01:01:01', '13:13:11'));

 select * from rg2 where within(dt, range('1980-01-1 01:01:01', '2019-08-09

13:13:11'));

 select * from rg2 where intersect(r, range('1980-01-1 01:01:01', '2019-08-09

13:13:11'));

228

 select * from rg2 where intersect(r, range('1980-01-1 01:01:01', '1999-08-09

13:13:11'));

drop store if exists pold;

create store pold (key: a int , value:name char(64), pol polygon(wgs84));

insert into pold values(1, "California",json({"type":"Polygon","coordinates":[[[-

123.23325,42.006187],[-122.37885,42.01166],[-121.037,41.99523],[-

120.00186,41.99523],[-119.99638,40.26452],[-120.00186,38.999348],[-

118.71478,38.101128],[-117.4989,37.21934],[-116.540436,36.50186],[-

115.85034,35.970596],[-114.63446,35.00118],[-114.63446,34.87521],[-

114.47015,34.710903],[-114.33323,34.44801],[-114.136055,34.305607],[-

114.25655,34.174164],[-114.41538,34.108437],[-114.53587,33.933174],[-

114.497536,33.697666],[-114.52492,33.54979],[-114.72757,33.40739],[-

114.66184,33.034958],[-114.52492,33.02948],[-114.47015,32.843266],[-

114.52492,32.755634],[-114.72209,32.717297],[-116.04751,32.624187],[-

117.126465,32.536556],[-117.24696,32.668003],[-117.25243,32.876125],[-

117.32912,33.12259],[-117.47151,33.29785],[-117.7837,33.538837],[-

118.18352,33.76339],[-118.26019,33.703144],[-118.41355,33.74148],[-

118.39164,33.84007],[-118.5669,34.042713],[-118.802414,33.998898],[-

119.21866,34.14678],[-119.27891,34.26727],[-119.55823,34.415146],[-

119.87589,34.40967],[-120.13879,34.47539],[-120.47288,34.44801],[-

120.64814,34.579456],[-120.6098,34.85878],[-120.67005,34.902596],[-

120.63171,35.099766],[-120.8946,35.247643],[-120.905556,35.45029],[-

121.00414,35.461243],[-121.16845,35.636505],[-121.28346,35.674843],[-

121.332756,35.78438],[-121.71614,36.195152],[-121.89688,36.315643],[-

121.93522,36.638786],[-121.85854,36.6114],[-121.787346,36.803093],[-

121.92974,36.978355],[-122.105,36.956448],[-122.33504,37.11528],[-

122.41719,37.24125],[-122.400764,37.36174],[-122.51578,37.520573],[-

122.51578,37.783466],[-122.32956,37.783466],[-122.406235,38.15042],[-

122.488396,38.112083],[-122.50482,37.931343],[-122.701996,37.893005],[-

122.9375,38.029926],[-122.97584,38.265434],[-123.129196,38.451653],[-

123.33184,38.56667],[-123.44138,38.698112],[-123.73714,38.95553],[-

123.68784,39.032207],[-123.82477,39.366302],[-123.76452,39.552517],[-

123.85215,39.83184],[-124.109566,40.105686],[-124.3615,40.25904],[-

124.4108,40.43978],[-124.15886,40.877937],[-124.109566,41.025814],[-

124.15886,41.14083],[-124.06575,41.442062],[-124.1479,41.715908],[-

124.25745,41.78163],[-124.21363,42.00071],[-123.23325 ,42.006187]]]}));

drop store if exists lstrm;

create store lstrm (key: a int, b int, value: ls linestring(srid:4326,metrics:10));

insert into lstrm values (100, 200, linestring(0 80 100 200 300, 0.1 80.2 300 400 550

600 700, 0.2 80.5 1000 2000 23456, 0.8 80.9 10000 30000));

select area(p1), area(p2) from mpg;

select dimension(p1), dimension(p2) from mpg;

select geotype(p1) from mpg;

229

select pointn(ls,1) from lstr;

select pointn(ls,2) from lstr;

select extent(p1) from mpg;

select extent(p2) from mpg;

select startpoint(ls) from lstr;

select endpoint(ls) from lstr;

select isclosed(ls) from lstr;

select isclosed(p1) from mpg;

select numpoints(ls) from lstr;

select numpoints(l2) from mline;

select numsegments(l2) from mline;

select numrings(l2) from mline;

select numrings(p1) from mpg;

select numrings(p2) from mpg;

select numpolygons(p1) from mpg;

select numpolygons(p2) from mpg;

select srid(p1) from mpg;

select srid(p2) from mpg;

select summary(p1) from mpg;

select xmin(ls) from lstr;

select ymin(ls) from lstr;

select xmax(ls) from lstr;

select ymax(ls) from lstr;

select convexhull(p1) from mpg;

select convexhull(pol) from pol1;

select convexhull(ls) from lstr;

select centroid(p1) from mpg;

select volume(po3) from pol2;

select volume(q1), volume(q2) from cb1;

select closestpoint(point(1 1), ls) from lstr;

select closestpoint(point(1 1), pol) from pol1;

select angle(c1, c2) from line1;

select angle(line(0 0, 2 5), c2) from line1;

230

select angle(line3d(0 0 0, 3 4 5), l) from line3d;

select buffer(c2,'distance=symmetric:2,join=round:10,end=round,point=circle:20') from

line1;

select buffer(c2,'distance=asymmetric:2,join=miter:10,end=flat,point=square:20') from

line1;

select length(c2) from line1;

select perimeter(pol) from pol1;

select perimeter(s1) from sq1;

select equal(s1,s2) from sq1;

select issimple(c2) from line1;

select issimple(pol) from pol1;

select isvalid(pol) from pol1;

select isring(pol) from pol1;

select isring(c2) from line1;

select ispolygonccw(pol) from pol1;

select ispolygoncw(pol) from pol1;

select outerring(pol) from pol1;

select outerrings(p1) from mpg;

select innerrings(p1) from mpg;

select ringn(p1,1) from mpg;

select ringn(p2,2) from mpg;

select ringn(pol,1) from pol1;

select ringn(pol,2) from pol1;

select innerringn(pol,1) from pol1;

select polygonn(p1,1) from mpg;

select unique(c2) from line1;

select union(c1,c2) from line1;

select union(p1,p2) from mpg;

select union(pol,'polygon((0 0, 2 3, 2 4, 8 2, 3 9, 0 0))') from pol1;

select union(pol,polygon((0 0, 2 3, 2 4, 8 2, 3 9, 0 0))) from pol1;

select collect(pol,polygon((0 0, 2 3, 2 4, 8 2, 3 9, 0 0))) from pol1;

select collect(p1,polygon((0 0, 2 3, 2 4, 8 2, 3 9, 0 0))) from mpg;

select topolygon(c1,30) from cir1;

select topolygon(s1,30) from sq1;

select topolygon(s1) from sq1;

231

select topolygon(s1) s1pgon, topolygon(s2) s2pgon from sq1;

select text(s1) from sq1;

select difference(line(0 0, 2 2), point(2 2)) df;

select difference(linestring(0 0, 2 2, 3 4), point(2 2)) df;

select difference(linestring(0 0, 2 2, 3 4, 4 6), line(2 2, 3 4)) df;

select difference(pol, polygon((0 0, 8 0, 800 800, 80 80, 0 0),(3 4, 4 6, 4 2, 3

4))) df from pol1;

select difference('polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))', pol)

df from pol1;

select symdifference(line(0 0, 2 2), point(2 2)) df;

select symdifference(linestring(0 0, 2 2, 3 4), point(2 2)) df;

select symdifference(linestring(0 0, 2 2, 3 4, 4 6), line(2 2, 3 4)) df;

select symdifference(linestring(0 0, 2 2, 3 4, 4 6), linestring(2 2, 3 4, 8 9)) df;

select symdifference(pol, polygon((0 0, 8 0, 800 800, 30 800, 0 0),(3 4, 4 6, 4 2, 3

4))) df from pol1;

select symdifference(pol, polygon((0 0, 8 0, 800 800, 80 80, 0 0),(3 4, 4 6, 4 2, 3

4))) df from pol1;

select symdifference('polygon((0 0, 8 0, 800 800, 80 80, 0 0),(3 4, 4 6, 4 2, 3

4))', pol) df from pol1;

select intersection('polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))',

'polygon((1 1, 9 1, 9 9, 1 9, 1 1))') dd;

select intersection('polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))', p1)

dd from mpg;

select intersection(p1, 'polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))')

dd from mpg;

select intersection('polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))', p2)

dd from mpg;

select union('polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))', 'polygon((1

1, 9 1, 9 9, 1 9, 1 1))') dd;

select union('polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))', p1) dd from

mpg;

select union(p1, 'polygon((0 0, 8 0, 8 8, 0 8, 0 0),(3 4, 4 6, 4 2, 3 4))') dd

from mpg;

select isconvex(pol) from pol1;

select interpolate(ls,0.5) from lstr;

232

select linesubstring(ls,0.2, 0.8) from lstr;

select locatepoint(ls, point(3 9)) from lstr;

select addpoint(ls, point(234 219)) from lstr;

select addpoint(ls, point(234 219), 2) from lstr;

select setpoint(ls, point(234 219), 1) from lstr;

select removepoint(ls, 2) from lstr;

select reverse(ls) from lstr;

select scale(ls, 3) from lstr;

select scale(ls, 10, 20) from lstr;

select scaleat(ls, point(10 20), 10) from lstr;

select scaleat(ls, point(10 20), 10, 20) from lstr;

select scalesize(ls, 10) from lstr;

select scalesize(ls, 10, 20) from lstr;

select scalesize(s1, 10, 20) from sq1;

select translate(ls, 10, 20) from lstr;

select transscale(ls, 200, 300, 10) from lstr;

select transscale(ls, 200, 300, 10, 20) from lstr;

select rotate(ls, 180) from lstr;

select rotate(ls, 1.0, 'radian') from lstr;

select rotateself(ls, 180) from lstr;

select rotateself(s1, 180) from sq1;

select rotateself(s1, 1.80, 'radian') from sq1;

select rotateat(s1, 1.80, 'radian', 100, 300) from sq1;

select rotateat(ls, 1.80, 'radian', 100, 300) from lstr;

select affine(ls, 1, 2,3, 4, 500, 600) from lstr;

select ls:x, ls:y, ls:m1, ls:m2, ls:m3, ls:m4 from lstrm where a < 10000;

select voronoipolygons(tomultipoint(ls)) vp from lstrm;

select voronoipolygons(tomultipoint(ls,100)) vp from lstrm;

select voronoipolygons(tomultipoint(ls),100,bbox(0 80 0.2 80.2)) vp from lstrm;

select voronoilines(tomultipoint(ls)) VL from lstrm;

select voronoilines(tomultipoint(ls),100)) VL from lstrm;

select voronoilines(tomultipoint(ls),100,bbox(0 80 0.2 80.2)) VL from lstrm;

233

select delaunaytriangles(tomultipoint(ls)) dt from lstrm;

select delaunaytriangles(tomultipoint(ls,100)) dt from lstrm;

select geojson(ls) from lstrm;

select geojson(ls, 10000) from lstrm;

select geojson(c1, 10000,300) from cir1;

select tomultipoint(ls) from lstrm;

select tomultipoint(c1, 300) from cir1;

select wkt(ls) from lstrm;

select minimumboundingcircle(ls) from lstrm;

select minimumboundingsphere(pt3) from d5 where a < 1000;

select isonleft(point(30 40), ls) from lstrm;

select leftratio(point(30 40), ls) from lstrm;

select isonright(point(30 40), ls) from lstrm;

select rightratio(point(30 40), ls) from lstrm;

select knn(ls, point(30 40), 10) from lstrm;

select knn(ls, point(30 40), 10, 10, 100) from lstrm;

select metricn(ls, 2) from lstrm;

select metricn(ls, 2, 3) from lstrm;

Timeseries Data

The following statements demonstrate timeseries data management.

create store timeseries(5m) tc1 (key: k1 int, c1 char(2), ts timestamp, value: v1

rollup int, v2 int);

create store timeseries(5m) ts1 (key: k1 int, ts timestamp, value: v1 rollup int, v2

int);

insert into ts1 (k1, v1, v2) values ('5', '103', '247');

234

insert into ts1 (k1, v1, v2) values ('5', '303', '253');

insert into ts1 (k1, v1, v2) values ('5', '503', '553');

insert into ts1 (k1, v1, v2) values ('5', '903', '153');

insert into ts1 (k1, v1, v2) values ('5', '1903', '153');

insert into ts1 (k1, v1, v2) values ('6', '10', '29');

insert into ts1 (k1, v1, v2) values ('6', '100', '29');

select * from ts1;

select * from ts1@5m;

create store timeseries(10s) ts1002 (key: k1 int, ts timestamp, value: v1 rollup

int, v2 int);

insert into ts1002 (k1, v1, v2) values ('5', '100', '200');

select * from ts1002;

select * from ts1002@10s;

drop store ts2;

create store timeseries(5m) ts2 (key: k1 int, ts timestamp, value: v1 rollup int, v2

int, v3 rollup int);

insert into ts2 values ('5', '2021-02-12 13:35:12', '100', '200', '111');

select * from ts2;

insert into ts2 values ('5', '2021-02-12 13:35:13', '100', '200', '1123');

insert into ts2 values ('6', '2021-02-12 13:36:14', '100', '200', '213');

insert into ts2 values ('7', '2021-02-12 13:36:17', '100', '200', '233');

insert into ts2 values ('6', '2021-02-12 13:37:17', '100', '200', '322');

select * from ts2;

select * from ts2@5m;

create index ts2idx1 on ts2(v1, k1);

create index ts2idx2 ticks on ts2(v3, v1, k1);

create index ts2idx3 ticks on ts2(v3, k1, v1);

insert into ts2 (k1, v2) values ('10', '243');

select * from ts2idx1;

select * from ts2idx2;

select * from ts2idx3;

235

create index ts2idx4 ticks on ts2(key: v3, k1, value: v1);

desc ts2idx4;

select * from ts2idx4;

select * from ts2idx4%5m;

drop store ts2002;

create store timeseries(5m|10m) ts2002 (key: k1 int, ts timestamp, value: v1 rollup

int, v2 int);

insert into ts2002 values ('5', '2021-02-12 13:35:12', '100', '200');

insert into ts2002 values ('5', '2021-02-12 13:35:13', '100', '200');

insert into ts2002 values ('6', '2021-02-12 13:35:14', '100', '200');

insert into ts2002 values ('6', '2021-02-12 13:36:14', '100', '200');

insert into ts2002 values ('7', '2021-02-12 13:36:17', '100', '200');

insert into ts2002 values ('6', '2021-02-12 13:36:17', '100', '200');

insert into ts2002 values ('6', '2021-02-12 13:37:17', '100', '200');

select * from ts2002;

select * from ts2002@5m;

create store timeseries(1h:0h) ts3 (key: k1 int, ts timestamp, k2 int, k3 char(10),

k4 char(12), k5 char(23), value: b rollup int, c int, c2 int, c3 rollup int, d rollup

int, e int, f rollup int);

insert into ts3 values ('1', '2020-12-14 12:12:12', '100', 'k3k', 'k4k', 'k5k',

'200', '300', '400', '456', '222', '333', '321');

insert into ts3 values ('2', '2020-12-14 12:12:12', '100', 'k3k', 'k4k', 'k5k',

'200', '300', '400', '456', '222', '333', '321');

insert into ts3 values ('2', '2020-12-14 12:52:12', '100', 'k3k', 'k4k', 'k5k',

'200', '300', '400', '456', '222', '333', '321');

insert into ts3 values ('3', '2020-12-14 12:52:12', '100', 'k3k', 'k4k', 'k5k',

'200', '300', '400', '456', '222', '333', '321');

insert into ts3 values ('2', '2020-12-14 12:13:12', '101', 'k3k', 'k4k', 'k5k',

'202', '304', '400', '457', '223', '353', '421');

insert into ts3 values ('2', '2020-12-14 12:14:12', '101', 'k3k', 'k4k', 'k5k',

'202', '304', '400', '457', '223', '353', '421');

select * from ts3;

select * from ts3@1h;

drop store ts4;

236

create store timeseries(1h:0h, 3M:2y) ts4 (key: k1 int, ts timestamp, value: v1

rollup int, v2 int);

insert into ts4 (k1, v1, v2) values ('1', '123', '321');

insert into ts4 (k1, v1, v2) values ('2', '123', '321');

insert into ts4 (k1, v1, v2) values ('3', '123', '321');

insert into ts4 (k1, v1, v2) values ('3', '123', '321');

select * from ts4;

select * from ts4@1h;

alter store ts4 add tick(1d);

alter store ts4 add tick(1D:10D);

alter store ts4 drop tick(1D);

create index ts4_idx1 on ts4(v1, ts);

select * from ts4_idx1;

create index ts4_idx2 on ts4(ts, k1);

select * from ts4_idx2;

alter store ts4 add tick(1q);

select * from ts4@1q;

alter store ts4 retention 0;

alter store ts4 retention 12M;

alter store ts4@3M retention 3y;

desc ts4;

desc ts4@3M;

create store timeseries(1d) ts5 (key: k1 int, ts timestamp, value: v1 rollup int, v2

int);

insert into ts5 values ('5', '2020-12-14 12:13:12', '100', '200');

insert into ts5 values ('5', '2020-12-14 12:14:12', '100', '200');

insert into ts5 values ('5', '2020-12-14 12:15:12', '100', '200');

insert into ts5 values ('5', '2020-12-14 12:16:12', '100', '200');

237

insert into ts5 values ('6', '2020-12-14 12:17:12', '100', '200');

insert into ts5 values ('6', '2020-12-14 12:18:12', '100', '200');

select * from ts5;

select * from ts5@1d;

create store timeseries(3d) ts5002 (key: k1 int, ts timestamp, value: v1 rollup int,

v2 int);

insert into ts5002 values ('5', '2020-12-14 12:13:12', '100', '200');

insert into ts5002 values ('5', '2020-12-14 12:14:12', '100', '200');

insert into ts5002 values ('6', '2020-12-14 12:17:12', '100', '200');

insert into ts5002 values ('6', '2020-12-14 12:18:12', '100', '200');

insert into ts5002 values ('7', '2020-12-15 12:18:12', '100', '200');

select * from ts5002;

select * from ts5002@3d;

create store timeseries(1w) ts6 (key: k1 int, ts timestamp, value: v1 rollup int, v2

int);

insert into ts6 values ('5', '2020-12-14 12:13:12', '100', '200');

insert into ts6 values ('5', '2020-12-14 12:14:12', '100', '200');

insert into ts6 values ('5', '2020-12-14 12:15:12', '100', '200');

insert into ts6 values ('5', '2020-12-14 12:16:12', '100', '200');

insert into ts6 values ('5', '2021-02-04 12:16:12', '100', '200');

select * from ts6;

select * from ts6@1w;

create store timeseries(1month) ts7 (key: k1 int, ts timestamp, value: v1 rollup

int, v2 int);

insert into ts7 values ('5', '2020-12-14 12:13:12', '100', '200');

insert into ts7 values ('5', '2021-02-04 12:16:12', '100', '200');

select * from ts7;

select * from ts7@1M;

create store timeseries(1year) ts8 (key: k1 int, ts timestamp, value: v1 rollup int,

v2 int);

insert into ts8 values ('5', '2020-12-14 12:13:12', '100', '200');

insert into ts8 values ('5', '2021-02-04 12:16:12', '100', '200');

238

select * from ts8;

select * from ts8@1y;

create store timeseries(1decade) ts9 (key: k1 int, ts timestamp, value: v1 rollup

int, v2 int);

insert into ts9 values ('5', '2020-12-14 12:13:12', '100', '200');

insert into ts9 values ('5', '2021-02-04 12:16:12', '100', '200');

select * from ts9;

select * from ts9@1D;

create store timeseries(15s:60s|1h) ts10 (key: ts timestamp, a int, value: b int

default '1000', c rollup int default '234');

insert into ts10 (a)values (100);

insert into ts10 (a)values (200);

insert into ts10 (a)values (300);

insert into ts10 (a)values (400);

insert into ts10 (a)values (600);

insert into ts10 (a)values (700);

insert into ts10 values (600);

select * from ts10;

select * from ts10@15s;

drop store tss1001;

create store tss1001 (key: ts timestamp, a int, value: b int default '1000');

insert into tss1001 (a)values (100);

select * from tss1001;

drop store tss1;

create store tss1 (key: a int, value: b timestamp);

insert into tss1 values (100);

select * from tss1;

drop store tss2;

create store tss2 (key: a int, value: b timestampsec);

insert into tss2 values (100);

insert into tss2 values (200);

239

select * from tss2;

drop store tss3;

create store tss3 (key: a int, value: b timestampnano);

insert into tss3 values (100);

insert into tss3 values (200);

select * from tss3;

drop store tss4;

create store tss4 (key: a int, value: b timestampmill);

insert into tss4 values (100);

insert into tss4 values (200);

insert into tss4 values (300);

select * from tss4;

drop store tspace1;

create store timeseries(5m) tspace1 (key: k1 int, ts timestamp, loc point, k2 int

default '23', value: v1 rollup int, v2 int, v3 rollup int);

insert into tspace1 (k1, loc, v2) values ('10', point(2 3), '243');

insert into tspace1 (k1, loc, v2, v1, v3) values ('10', point(2 3), '243', '1222',

'3456');

insert into tspace1 (k1, loc, v2, v1, v3) values ('11', point(4 5), '643', '2222',

'4456');

insert into tspace1 (k1, loc, v2, v1, v3) values ('12', point(4 5), '643', '2222',

'4456');

select * from tspace1;

select * from tspace1@5m;

select * from tspace1@5m where nearby(loc, point(34 12), 100) and k1=12;

create index tspace1idx1 on tspace1(v1, k1);

create index tspace1idx2 on tspace1(v3, v1, k1);

create index tspace1idx3 on tspace1(v3, k1, v1);

select * from tspace1idx1;

select * from tspace1idx1@5m;

select * from tspace1idx2;

select * from tspace1idx3;

240

drop store tspace2;

create store timeseries(5m) tspace2 (key: k1 int, ts timestamp, loc circle, k2 int

default '23', value: v1 rollup int, v2 int, v3 rollup int);

insert into tspace2 (k1, loc, v2, v1, v3) values ('10', circle(2 3 30), '243',

'1292', '3456');

insert into tspace2 (k1, loc, v2, v1, v3) values ('11', circle(4 5 50), '643',

'2262', '4456');

insert into tspace2 (k1, loc, v2, v1, v3) values ('12', circle(4 5 45), '645',

'2422', '4056');

select * from tspace2;

select * from tspace2@5m;

select * from tspace2@5m where nearby(loc, point(34 12), 100) and k1=12;

select * from tspace2@5m where nearby(loc, point(34 30), 40) and k1=12;

create index tspace2idx1 on tspace2(v1, k1);

create index tspace2idx2 on tspace2(v3, v1, k1);

create index tspace2idx3 on tspace2(v3, k1, v1);

select * from tspace2idx1;

select * from tspace2idx1@5m;

select * from tspace2idx2;

select * from tspace2idx3;

select * from tspace2idx3 where v3=4456;

drop store sensorstat;

create store timeseries(5m:1d,1h:48h,1d:3M,1M:20y|5y)

sensorstat (key: sensorID char(16), ts timestamp,

 value: temperature rollup float,

 pressure rollup float,

 windspeed rollup float,

 rpm rollup float,

 fuel rollup float,

 model char(16),

 type char(16)

);

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone1-sid1', '20.0', '35.5', '30.2', '1300', '1.3', 'AA212', 'DH');

241

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone1-sid1', '20.5', '35.8', '30.7', '1320', '1.5', 'AA212', 'DH');

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone1-sid2', '21.0', '35.7', '30.8', '1304', '1.2', 'AA213', 'DH');

insert into sensorstat (sensorid, temperature, pressure, windspeed, rpm, fuel, model,

type) values ('drone2-sid1', '22.0', '36.4', '30.3', '1404', '2.2', 'AB213', 'DF');

drop store delivery;

create store timeseries(1M:1y,1y)

 delivery (key: ts timestamp, courier char(32), customer char(32),

 value: meals rollup bigint, addr char(128));

insert into delivery (courier, customer, meals, addr) values ('QDEX', 'JohnDoe',

'3', '110 A Street, CA 90222');

insert into delivery (courier, customer, meals, addr) values ('QDEX', 'JaneDoe',

'5', '110 B Street, CA 90001');

insert into delivery (courier, customer, meals, addr) values ('QSEND', 'MaryAnn',

'3', '100 C Street, CA 92220');

insert into delivery (courier, customer, meals, addr) values ('QSEND', 'PaulD',

'12', '550 Ivy Road, CA 90221');

select * from delivery;

select * from delivery@1M;

select * from delivery@1y;

create index delivery_index_courier on delivery(courier, customer, meals);

select * from delivery_index_courier;

select * from delivery_index_courier@1M;

select * from delivery_index_courier@1M where courier='*' and customer='JohnDoe';

select * from delivery_index_courier@1y;

create index delivery_index2_courier on delivery@1M(courier, customer, meals::min,

meals::max, meals::sum);

select * from delivery_index2_courier;

select * from delivery_index2_courier where courier='*' and customer='PaulD';

